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A critical aspect of vertebrate eye development is closure of the choroid fissure (CF). Defects in CF closure
result in colobomas, which are a significant cause of childhood blindness worldwide. Despite the
growing number of mutated loci associated with colobomas, we have a limited understanding of the cell
biological underpinnings of CF closure. Here, we utilize the zebrafish embryo to identify key phases of CF
closure and regulators of the process. Utilizing Laminin-111 as a marker for the basement membrane
(BM) lining the CF, we determine the spatial and temporal patterns of BM breakdown in the CF, a pre-
requisite for CF closure. Similarly, utilizing a combination of in vivo time-lapse imaging, β-catenin im-
munohistochemistry and F-actin staining, we determine that tissue fusion, which serves to close the
fissure, follows BM breakdown closely. Periocular mesenchyme (POM)-derived endothelial cells, which
migrate through the CF to give rise to the hyaloid vasculature, possess distinct actin foci that correlate
with regions of BM breakdown. Disruption of talin1, which encodes a regulator of the actin cytoskeleton,
results in colobomas and these correlate with structural defects in the hyaloid vasculature and defects in
BM breakdown. cloche mutants, which entirely lack a hyaloid vasculature, also possess defects in BM
breakdown in the CF. Taken together, these data support a model in which the hyaloid vasculature and/or
the POM-derived endothelial cells that give rise to the hyaloid vasculature contribute to BM breakdown
during CF closure.

& 2016 Elsevier Inc. All rights reserved.
1. Introduction

In all vertebrates, eye development begins with the evagination
of optic primordia from the diencephalon. The optic primordia
subsequently adopt vesicle-like structures, and as the lateral edges
of the vesicles begin to fuse, each invaginates to form a bilayered
cup. The outer layer of the cup gives rise to the retinal pigment
epithelium (RPE) and the inner layer gives rise to the retina. Fusion
between the prospective RPE and retina occurs at the choroid
fissure (CF), a distinct region of the ventral optic cup. Prior to fu-
sion, the hyaloid vasculature enters the eye through the CF and the
retinal ganglion cell axons exit through it. Once these develop-
mental events have occurred, CF closure (CFC) is critical for
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containment of the retina and RPE within the optic cup. Defects in
ventral optic cup formation or CFC result in colobomas (Graw,
2003; Gregory-Evans et al., 2004; Fitzpatrick and van Heyningen,
2005; Chang et al., 2006). The incidence of colobomas ranges from
2.6 in 10,000 births in the U.S. to 7.5 in 10,000 births in China, and
colobomas are estimated to be present in 3–11% of all blind chil-
dren worldwide (Onwochei et al., 2000). Colobomas are also pre-
sent in over 50 human genetic disorders (OMIM), often associated
with other ocular abnormalities like microphthalmia (Bermejo and
Martinez-Frias, 1998).

Despite a significant amount of genetic research to identify
coloboma loci, causative mutations have been identified in less
than 20% of coloboma patients (Gregory-Evans et al., 2004; Fitz-
patrick and van Heyningen, 2005; Chang et al., 2006). Moreover,
we lack a comprehensive mechanistic understanding of the cel-
lular and molecular regulation of CF closure in the human eye or in
any of the animal model systems utilized for modeling human eye
development and disease. Studies from a number of laboratories,
and from both human genetics and experimental analyses in a
0.1016/j.ydbio.2016.09.008i
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variety of animal systems, have identified a suite of gene products
required for CFC (reviewed in Bibliowicz et al. (2011), Morris
(2011) and Gestri et al. (2012)). These include: Pax2 (Sanyanusin
et al., 1995; Torres et al., 1996; Macdonald et al., 1997; Bower et al.,
2012), GDF3 and GDF6 (Asai-Coakwell et al., 2007; Ye et al., 2010),
CHD7 (Bosman et al., 2005; Lalani et al., 2006; Bajpai et al., 2010),
SALL2 (Kelberman et al., 2014), YAP1 (Williamson et al., 2014),
VSX2 (Bar-Yosef et al., 2004), SMOC1 (Rainger et al., 2011), Sox11
(Pillai-Kastoori et al., 2014), Jnk1/2 (Weston et al., 2003), MAB21L2
(Rainger et al., 2014; Deml et al., 2015), and Vax1 and Vax2 (Bar-
bieri et al., 2002; Take-uchi et al., 2003), as well as components of
the Hedgehog (Schimmenti et al., 2003; Koudijs et al., 2008; Lee
et al., 2008), Fibroblast growth factor (FGF) (Cai et al., 2013; Chen
et al., 2013a; Atkinson-Leadbeater et al., 2014), Wnt (Liu et al.,
2016), and Retinoic acid (RA) (Matt et al., 2008; See and Clagett-
Dame, 2009; Lupo et al., 2011) signaling pathways. While the
mechanisms underlying their requirements during CFC have not
been fully elucidated in each case, many of these gene products act
early in eye development to modulate key events in retinal growth
and cell survival, optic cup morphogenesis and patterning that are
ultimately required for CFC. Defects in any of these processes re-
sult in colobomas; however, these are likely an indirect con-
sequence of defects in ventral optic cup formation or patterning,
and not a direct function of the mutated gene product during CFC.

Indeed, we have a far more limited understanding of the later
events in eye development that function to close the CF. Results
from several studies link an inability to degrade the basement
membrane (BM)/basal lamina that lines the CF to defects in CFC
and colobomas. For example, deficiencies in RA signaling during
the later stages of eye development in rats result in a retention of
the BM lining the CF and colobomas (See and Clagett-Dame, 2009).
Knockout or mutations in Pax2/pax2 (Torres et al., 1996; Macdo-
nald et al., 1997) or Vax2 (Barbieri et al., 2002) also result in re-
tention of the CF BM and colobomas. Much like BM breakdown,
the mechanism of tissue fusion that ultimately seals the tightly
apposed sides of the CF during CFC is also poorly understood. Roles
for adhesion regulators like N-cadherin (Erdmann et al., 2003;
Masai et al., 2003) and α-catenin (Chen et al., 2012) have been
identified in mediating CFC, but the morphogenetic events leading
to tissue fusion in the CF and their cellular underpinnings have not
been elucidated in any system.

To begin to identify the cellular and molecular underpinnings
of these later aspects of CFC, we utilized the zebrafish embryo and
a combination of fixed-sample and in vivo imaging in wild-type
(WT) and mutant lines. We determined the spatial and temporal
aspects of BM breakdown and tissue fusion during CFC, identifying
unique characteristics of CF cells throughout the closure process.
We identify BM membrane breakdown defects in the CF of talin1
and cloche mutants, and these defects correlate with malforma-
tions in, or absence of, the periocular mesenchyme (POM)-derived
hyaloid vasculature. Taken together, these data support a model in
which the hyaloid vasculature itself, or the POM-derived en-
dothelial cells that generate the hyaloid vasculature, facilitate BM
breakdown during CFC.
2. Materials and methods

2.1. Animals

Zebrafish were maintained as described (Westerfield, 1995).
Embryos were obtained and staged as described (Kimmel et al.,
1995). We utilized the transgenic lines Tg(fli1a:eGFP) (Lawson and
Weinstein, 2002), Tg(sox10:eGFP) (Wada et al., 2005), Tg(sox10:
mRFP) (Kirby et al., 2006), Tg(kdrl:mCherry) and Tg(kdrl:moesin-
GFP) (Wang et al., 2010). tln1hi3093Tg/þ embryos (Amsterdam et al.,
Please cite this article as: James, A., et al., (2016), http://dx.doi.org/1
2004) were obtained from ZIRC (Eugene, OR, USA) and crossed
with Tg(kdrl:mCherry). tln1hi3093tg mutants were genotyped using
these primers: 5′-ccaaacctacaggtggggtc-3′ and 5′-taccagcatttact-
caacaggaac-3′. clochem378 embryos (Stainier et al., 1995) were a
kind gift of Dr. Beth Roman (University of Pittsburgh) and mutants
were identified based on lack of blood flow at 48 hpf. All protocols
used within this study were approved by the Institutional Animal
Care and Use Committee of The University of Texas at Austin and
The University of Pittsburgh School of Medicine, and conform to
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

2.2. Microinjection of mRNAs

Capped mRNAs were synthesized with a mMESSAGE mMA-
CHINE Sp6 kit (Life Technologies) and were injected into one-cell-
stage embryos with the following amounts: 150 pg of membrane-
GFP or 100 pg of utrophin-GFP (Burkel et al., 2007).

2.3. In situ hybridization

In situ hybridizations were performed as described (Jowett and
Lettice, 1994). A talin1 in situ probe was synthesized from a partial
cDNA cloned by RT-PCR with the following primers: 5′-tag-
cagtggcacagtcccgtattg-3′ and 5′-ttttttcttcctccaggcttg-3′. Embryos
were subsequently cryosectioned and imaged, or immunostained
in the case of fli1a:GFP and imaged.

2.4. Immunohistochemistry

Immunohistochemistry was performed as described (Uribe and
Gross, 2007). Briefly, zebrafish embryos were fixed overnight in 4%
paraformaldehyde, or 30 min at room temperature (for β-catenin),
and then cryosectioned. Primary antibodies were used at the fol-
lowing dilutions: rabbit polyclonal anti-laminin (Sigma, #L9393),
1:200; mouse monoclonal anti-β-catenin (BD Biosciences,
610153), 1:250; and rabbit polyclonal anti-GFP (Life Technologies,
A11122), 1:50. Phalloidin (Alexa Fluor 488 or 633, Invitrogen), DAPI
or Sytox-Green were applied along with, or just prior to, the ap-
plication of Cy2, Cy3 or Cy5 conjugated Goat anti-mouse or anti-
rabbit IgG secondary antibodies (Jackson Labs).

2.5. Imaging

For sectioned embryos, imaging was performed with a Zeiss
LSM5 Pascal or Olympus FV1200 confocal microscope. In situ
cryosections were imaged utilizing a Leica DM2500 with a 100X
oil immersion objective (Numerical aperture: 1.25). Brightfield
images were captured on a Leica MZ16F stereomicroscope
mounted with a DFC480 digital camera. In vivo time-lapse imaging
was performed on a Leica TCS SP5 II confocal microscope equipped
with a 25X (Numerical aperture: 0.95) water immersion objective
as previously described (Hartsock et al., 2014), or an Olympus
FV1200 with a 20X (Numerical aperture: 1.0) water immersion
objective.

2.6. TUNEL staining

Embryos were fixed in 4% paraformaldehyde and cryosec-
tioned. The sectioned tissues were permeabilized with 0.1% Tri-
tonX-100 in 0.1% sodium citrate and then treated with the TUNEL
reaction mixture (Roche). Images were captured with a Zeiss LSM5
Pascal.
0.1016/j.ydbio.2016.09.008i
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3. Results

3.1. Temporal and spatial dynamics of basement membrane break-
down during CF closure

To identify the cellular and molecular underpinnings of CFC in
zebrafish, we first performed a detailed analysis of the temporal
and spatial dynamics of CFC. In mouse and hamster, BM break-
down correlates with CFC (Geeraets, 1976; Hero, 1989, 1990). La-
minin-111 (Lam-111) immunostaining was used as a marker for
the BM lining the CF to determine whether this is also the case in
zebrafish. Embryos were sectioned sagittally, at varying depths
along the proximal-distal axis of the eye (Fig. 1A,N), and the pre-
sence or absence of Lam-111 assessed. We designated the vitreous
cavity as “central” along the proximal-distal axis of the CF, as this
was a fiducial marker easily identifiable in the continually growing
eye over time. For Lam-111 immunohistochemistry, we then ex-
amined sections taken at 12 mm intervals proximal and distal of
this central point.

Previous histological data suggested that CFC starts at 36 hpf
(hour post fertilization) in zebrafish (Schmitt and Dowling, 1994),
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Fig. 1. Temporal and spatial dynamics of basement membrane breakdown during ch
sections in B-M along the proximal-distal axis of the CF. The vitreous cavity was defined
this point. (B-M) Sagittal sections along the proximal-distal axis of the retina, immunost
show high magnification views of the regions in the dashed boxes. (N) Schematic dep
sections along the proximal-distal axis of the retina immunostained for Lam-111. Scale
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so we examined 36 hpf embryos in our initial assays (Fig. 1J-M).
When Lam-111 distribution was examined in these eyes however,
the BM was already absent/degraded in the central/proximal re-
gion of the CF (Fig. 1L), and was present or partially degraded in
more distal regions (Fig. 1J,K). Examination of eyes from younger
embryos (31 hpf) revealed that, despite the tight apposition of the
sides of the CF, the BM remained intact at all proximal-distal
depths (Fig. 1B-E; inset in Fig. 1D). By 34 hpf, BM breakdown had
initiated and the BM separating the closely apposed sides of the CF
was discontinuous (Fig. 1F-I, inset in Fig. 1H). Spatially, BM
breakdown began in the central/proximal CF (Fig. 1F-I), and pro-
ceeded bi-directionally from this point (Fig. 1 J-M). Laminin-111
staining was mostly absent in the CF by 48 hpf (Fig. 1N-P) except in
the most distal region of the eye in some embryos, where it was no
longer detected at 60 hpf (data not shown).

TEM studies in mouse (Hero, 1989, 1990; Hero et al., 1991) and
hamster (Geeraets, 1976) have also reported a correlation between
cell death in the CF and CFC, although the functional relevance of
this is unknown. TUNEL staining during zebrafish CFC did not
identify any apoptotic cells in the CF (data not shown).
iv (+24 µm) (0) iii (+12 µm)
proximal

+12 µm)
proximal

oroid fissure closure in zebrafish. (A) Schematic depicting the approximate level of
as central, and sections were taken at 12 mm intervals proximally and distally from
ained for Lam-111 expression. (B-E) 31 hpf, (F-I) 34 hpf, (J-M) 36 hpf. Insets in D, H
icting the plane of section for 48 hpf embryos in O,P. (O,P) Representative sagittal
bars¼20 mm.
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Fig. 2. in vivo imaging of choroid fissure closure in zebrafish. (A) Schematic depicting the approximate level of sections in B-D along the proximal-distal axis of the CF. The
vitreous cavity was defined as central, and optical sections were taken at 16 mm intervals proximally and distally from this point. (B-D) membrane-GFP injected embryos were
imaged throughout the CF. Single micron optical slices are shown from 44 to 49 hpf and at three distinct proximal-distal regions of the CF. (B) Distally, the CF remains open
until at least 49 hpf. (C) Distal/centrally, the CF appears to close between 46–47 hpf. (D) Proximally, the CF already appears to be closed at 44 hpf. Orange arrowheads in B,C
mark open CF. White arrow in C marks what appears to be a closed CF. Dashed line outlines the RPE. Scale bar¼50 mm.
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3.2. Temporal and spatial dynamics of tissue fusion during CF closure

Next, we wanted to determine when tissue fusion occurs dur-
ing CFC and we turned to in vivo imaging to address this question.
Embryos were injected with membrane-GFP (Fig. 2) or utrophin-
GFP (data not shown) mRNA at the one-cell stage and embryos
were imaged at various proximal-distal positions throughout the
CF over time. Our initial imaging strategy focused on 24–40 hpf
embryos, hypothesizing that fusion would likely occur between
�32 and 34 hpf, correlating closely with basement membrane
breakdown. However, during this time frame, fusion appeared to
begin only at the very end of the imaging window (data not
shown). Thus, we shifted our imaging window slightly later, to 32–
52 hpf, to better observe the initiation and completion of CFC
(Fig. 2A; n¼4 embryos; Supplemental Movies 1–3). As above, for
axial orientation along the proximal-distal axis we again desig-
nated the central CF as the vitreous cavity; however, because there
is substantial growth and morphogenesis occurring in the eye over
these time points, and because we did not utilize a lineage marker
to track individual cells, it is not possible to directly compare the
locations of CF cells from early time points (i.e. BM breakdown
assays) to later time points analyzed in these fusion assays. From
the time-lapse movies, fusion of the CF in the most proximal re-
gions imaged appeared to initiate at �37.5 hpf and to be complete
by 44 hpf, based on the tight apposition between the two sides of
the CF and the appearance of a seemingly continuous RPE (Fig. 2D).
In the distal/central CF, the two sides of the CF became tightly
apposed at �46 and 47 hpf (Fig. 2C), while in the most distal CF,
fusion had yet to begin even at 49 hpf (Fig. 2B).

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.ydbio.2016.09.008.

Absence of Lam-111 staining in the central CF and the tight
apposition of the sides of the CF at 36 hpf (Fig. 1L) initially sug-
gested that tissue fusion might occur immediately after BM
breakdown; however, in vivo imaging data indicated a significantly
later timing for the fusion process. To address this apparent con-
tradiction, we performed immunohistochemistry on sagittal sec-
tions taken at 16 mm intervals along the proximal-distal axis of the
Please cite this article as: James, A., et al., (2016), http://dx.doi.org/1
CF, identifying the margins of CF cells with phalloidin, which
marks F-actin, and adherens junctions with β-catenin im-
munohistochemistry (Fig. 3). Co-localization of F-actin and β-ca-
tenin provides a reliable indication that a stable adherens junction
had formed, and thus, that fusion had occurred (Gumbiner, 2000;
Halbleib and Nelson, 2006; Hartsock and Nelson, 2008; Oda and
Takeichi, 2011). Examining single 1 mm optical sections at 44 hpf
revealed that F-actin and β-catenin were co-localized in the cen-
tral/proximal region of the CF, indicating that the CF was indeed
fused at this time (Fig. 3D). Proximal to this however, the CF was
still open at 44 hpf (Fig. 3E), despite in vivo imaging data that in-
dicated the two sides of the CF might already have undergone
fusion (Fig. 2). Tissue fusion proceeded bi-directionally from the
central/proximal region, with F-actin and β-catenin co-localization
in the central (Fig. 3M) and proximal (Fig. 3O) aspects of the CF at
�47 hpf (Fig. 3M), and the distal/central CF at 49 hpf (Fig. 3Q).
Fusion is complete by �54 hpf in most embryos, with the excep-
tion of the most distal CF, which is fully closed by 72 hpf (data not
shown). At all regions of fusion, F-actin and β-catenin formed a
“seam” at the site of fusion (e.g. Fig. 3M), which then dissipated
within 1–2 h thereafter (e.g. Fig. 3R). Previously, in cell culture it
was observed that there are areas of organized actin outside of the
apical zonula adherens that are required for proper contractile
activity (Wu et al., 2014). Examination of the CF in each single
1 mm optical slice through an individual 16 mm section plane re-
vealed a progressive co-localization between F-actin and β-catenin
within the CF where there are points in which β-catenin is present
without F-actin and vice versa, indicating that both the traditional
apical cortical ring (seam) and lateral adhesion clusters (puncta)
are present in CF cells during CF fusion (Fig. 3U).

3.3. Periocular mesenchyme-derived endothelial cells contribute to
CFC

TEM studies in mouse have shown that BM breakdown corre-
lates with a population of “amoeboid phagocytic cells” present in
the CF, and these cells possess pseudopodia which adhere to the
BM at regions where it is being actively degraded (Hero, 1990;
0.1016/j.ydbio.2016.09.008i
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Fig. 3. Temporal and spatial dynamics of tissue fusion during choroid fissure closure in zebrafish. Single micron optical sections from sagittal cryosections stained with
phalloidin (green) and anti-β-catenin (red) at distinct proximal-distal regions of the CF over time. As in Fig. 2, the vitreous cavity was defined as central, and sections were
taken at 16 mm intervals proximally and distally from this point. (A-E) At 44 hpf, the CF is fused in central/proximal sections (white arrow) based on co-localization between
F-actin and β-catenin in a fusion ‘seam’. (F-J) At 45 hpf, the two sides of the CF are tightly apposed but no fusion outside of the central-proximal region is detected. (K-O) At
47 hpf, a fusion seam is present within central and proximal sections, and there are punctate regions of co-localization in distal/central sections. (P-T) At 49 hpf, the fusion
seam has disappeared in the central and proximal CF regions while it is appearing in the distal/central region. (U) Single 1 mm optical sections from one section plane aligned
distal (left) to proximal (right) demonstrate a progressive co-localization of F-actin and β-catenin in the CF and formation of the fusion seam. Scale bar¼50 mm (A-T) and
5 mm (U).
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Hero et al., 1991). In Mitf-/- mutants, there is a decrease or com-
plete absence of these phagocytic cells in CF regions where BM
breakdown did not occur. Based on these observations, the authors
hypothesized that these phagocytic cells were of mesenchymal
origin and that they contribute to BM breakdown. Periocular
mesenchyme (POM) cells migrate into the developing eye to form
a variety of ocular and extraocular structures (Gage et al., 2005).
Moreover, POM cells have been reported to function during CFC in
a variety of contexts, and in a variety of model systems, with de-
fects in POM function or survival resulting in colobomas (Evans
and Gage, 2005; Kim et al., 2007; McMahon et al., 2009; See and
Clagett-Dame, 2009; Bajpai et al., 2010; Lupo et al., 2011). Despite
these studies, the cellular mechanisms through which POM cells
contribute to CFC remain largely unknown.

We hypothesized that POM might play a direct role in med-
iating CFC. To test this hypothesis, we utilized transgenic zebrafish
lines in which GFP is expressed in distinct populations of POM
cells. Tg(sox10:eGFP) expresses GFP in neural crest cells (Wada
et al., 2005); during CFC, sox10:GFPþ cells were detected tran-
siently in the CF, but not in regions where BM breakdown was
occurring and were no longer present within the CF at 37 hpf
(Fig. 4A-A″; Fig. S1A-A″). In the eye, subsets of POM cells migrate
through the CF to generate the hyaloid vasculature, and these are
labeled in Tg(fli1a:eGFP) embryos (Lawson and Weinstein, 2002;
Alvarez et al., 2007; Hartsock et al., 2014). In comparison to sox10:
GFPþ cells, which rapidly transit the CF to enter the anterior
chamber, fli1a:eGFPþ cells are retained in the CF to generate the
hyaloid. Moreover, observing kdrl:mCherryþ hyaloid cells in
membrane-GFP injected embryos highlights that hyaloid cells are
Fig. 4. Periocular mesenchymal cells contribute to CFC. (A-C) Sagittal views of the CF s
eGFPþ cells are detected in the CF, 37 hpf section pictured. (B) fli1a:eGFPþ cells are
accumulations that localize to regions of BM breakdown. Arrows denote puncta of F-act
and 10 mm (C).

Please cite this article as: James, A., et al., (2016), http://dx.doi.org/1
retained in the CF as late as 40 hpf (Supplemental Movie 4). In-
terestingly, fli1a:eGFPþ cells localized to regions of the CF where
the BM was absent or was punctate (Fig. 4B,C; Fig. S1B-E), and they
possessed pronounced F-actin accumulations that localize to re-
gions of BM breakdown (Fig. 4C-C‴).

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.ydbio.2016.09.008.

3.4. POM is required for basement membrane breakdown during
choroid fissure closure

The data presented thus far support a model in which POM
cells could play a role during CFC, possibly utilizing an F-actin
dependent process to facilitate BM breakdown. To test this model,
we analyzed Talin function during CFC. Talin is a scaffold protein
that links integrins to the actin cytoskeleton, playing a critical role
in integrin activation (Legate and Fassler, 2009; Moser et al., 2009;
Desiniotis and Kyprianou, 2011). In zebrafish, talin1 is enriched in
the CF, in both POM cells lining the CF and retinal/RPE cells that
comprise the fissure (Fig. 5A, D-F). A talin1 loss of function mutant
was previously identified, but its role during eye development has
not yet been examined (Amsterdam et al., 2004). tln1hi3093 mu-
tants possessed colobomas at 3 dpf (Fig. 5B,C), with the distal as-
pect of the CF more affected, reminiscent of an iris coloboma in
humans (Chang et al., 2006). BM degradation in the CF of tln1
mutants was deficient at 48 hpf, a time point at which BM de-
gradation was complete in most CF regions of phenotypically wild-
type siblings (Fig. 5G-J). Distribution of talin1 in the POM and
retinal/RPE cells within the CF, and correlation between fli1a:eGFP
tained with anti-GFP (green), Lam-111 (red) and/or phalloidin (blue). (A) Few sox10:
retained in the CF. 36 hpf section pictured. (C) fli1a:eGFPþ cells possess F-actin
in where Lam-111 is low or absent. 34 hpf section pictured. Scale bar¼20 mm (A,B)
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Fig. 5. talin1 is required for CFC in zebrafish. (A) talin1 is expressed within the POM and retinal/RPE cells lining the CF at 33 hpf (arrow). (B,C) Lateral views of the eye of
tln1hi3093Tg mutant (C) and wild-type sibling (B) at 3dpf. tln1 mutants possess colobomas. (D-F) Distal section through the eye of a 32 hpf embryo demonstrating talin1
expression within the retina/RPE cells lining the CF (arrows) and the hyaloid vasculature (marked by GFP expression from fli1a:eGFP; arrowhead). (G-J) Sagittal sections
through the eyes of 48 hpf tln1 mutants and siblings stained with Lam-111 (red) and Sytox-green (DNA; green). BM degradation is disrupted in tln1 mutants at 48 hpf. (K-N)
Maximum projection images of the distal hyaloid in tln1 mutants and siblings demonstrating severe hypotrophy of the hyaloid in the tln1 mutant at 44.5 hpf. Scale
bar¼20 mm (G-J, K,M) and 50 mm (L,N).
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expressing cells and regions of BM breakdown indicated that the
POM-derived hyaloid vasculature might be affected in tln1 mu-
tants. To assess hyaloid formation we crossed the kdrl: mCherry
transgene into the tln1 mutant line and imaged the hyaloid as
previously described (Hartsock et al., 2014). Indeed, the structure
of the hyaloid was disrupted in the distal/central region of the CF
with the hyaloid severely hypotrophic relative to that in wild-type
siblings (Fig. 5K-N).

These findings support a model in which BM breakdown during
CFC requires an actin-mediated process and indicate that POM-
derived endothelial cells and/or the hyaloid itself may play a direct
role in facilitating BM breakdown. To test this model we utilized
the cloche mutant which lacks all early ocular vasculature (Stainier
et al., 1995; Liao et al., 1997; Dhakal et al., 2015), thus eliminating
any potential contribution of POM-derived endothelial cells to CFC.
Please cite this article as: James, A., et al., (2016), http://dx.doi.org/1
As in tln1 mutants, BM degradation was deficient in cloche mu-
tants and Lam-111 staining was detected in both proximal and
distal regions of the CF at 51 hpf (Fig. 6C,D), a time at which it is
absent from wild-type siblings (Fig. 6A,B). Lam-111 staining was
absent in cloche mutants by 3dpf (data not shown) however, in-
dicating that the absence of the hyaloid vasculature delayed, but
did not completely prevent, BM breakdown.
4. Discussion

The molecular and cellular underpinnings of CFC are largely
unknown, despite the relatively high incidences of colobomas in
the human population and the increasing number of identified loci
associated with isolated or syndromic colobomas (e.g. Graw, 2003;
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Fig. 6. POM-derived endothelial cells facilitate BM breakdown during CFC. (A-D) Sagittal sections through the eyes of 51 hpf clochem378 mutants and siblings stained with
Lam-111 (red) and Sytox-green (DNA; green). BM degradation is disrupted in clochem378 mutants in both the (C) proximal and (D) distal regions of the CF when compared to
(A,B) siblings. Scale bar¼25 mm.

Fig. 7. Schematics depicting key stages and events of CFC. (A) During Stage I, tissue growth and optic cup morphogenesis generates an appropriate number of cells, which
are correctly patterned and positioned in the optic cup. The opposing sides of the CF become closely apposed. During Stage II, the basement membrane lining the CF is
degraded through a process involving periocular mesenchyme cells. During Stage III, tissue fusion between opposing sides of the CF closes the fissure. (B) Schematic of
basement membrane breakdown (green¼BM) within the CF from 31 to 48 hpf. BM breakdown initiates in the central/proximal CF and proceeds bi-directionally, being
complete by 48 hpf except in the most distal regions of the CF. (C) Schematic of tissue fusion (blue¼ fusion) in the CF from 41 to 54 hpf. The hyaloid vasculature is depicted in
red in each image. Fusion initiates in the central/proximal CF and proceeds bi-directionally, being complete by �54 hpf except in the most distal regions of the CF.
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Gregory-Evans et al., 2004; Fitzpatrick and van Heyningen, 2005;
Chang et al., 2006). CFC can be segregated into three principal
stages (Fig. 7A). During Stage I, optic cup morphogenesis proceeds
such that the correct number of cells is generated, and the retina/
RPE aspects of the CF properly develop and become positioned in
the ventral aspect of the optic cup. Stage II of CFC involves
breakdown of the basement membrane/basal lamina lining the
neuroepithelial and RPE components of the CF. Stage III is com-
prised of tissue fusion events that serve to close the CF. Many
genes mutated in human coloboma patients have been shown to
mechanistically function during Stage I when examined in animal
model systems; these include SALL2 (Kelberman et al., 2014), PAX2
(Sanyanusin et al., 1995; Torres et al., 1996; Macdonald et al., 1997;
Bower et al., 2012), CHD7 (Bosman et al., 2005; Lalani et al., 2006;
Bajpai et al., 2010), and GDF3 and GDF6 (Asai-Coakwell et al., 2007;
Ye et al., 2010). Moreover, in vivo imaging studies have also begun
to identify cell movements and cell populations that generate
distinct components of the CF (Picker et al., 2009). By comparison,
virtually nothing is known about the mechanisms underlying the
Stage II BM breakdown or Stage III tissue fusion events of CFC.
Here, we have utilized zebrafish to determine the spatial and
temporal characteristics of BM breakdown (Fig. 7B) and tissue
fusion (Fig. 7C) and thereby provide a model in which the cellular
and molecular underpinnings of these processes can now be
elucidated.

Previous studies in a variety of model systems have led to the
hypothesis that defects in Stage II, an inability to degrade the CF
BM, result in colobomas. Indeed, knockout or loss of function
mutations in Pax2/pax2 (Torres et al., 1996; Macdonald et al., 1997)
and Vax2 (Barbieri et al., 2002) result in retention of the CF BM and
colobomas. Similarly, in Fatty Liver Shionogi mice, the CF BM is
retained and colobomas result (Tsuji et al., 2012). These data lead
to a model in which BM breakdown is required for normal CFC;
however there is very little known about how this process occurs
in vivo. As discussed above, TEM studies in mouse have shown that
BM breakdown correlates with a population of cells that are pos-
sibly mesenchymal in origin (Hero, 1990; Hero et al., 1991). POM
cells, comprised of lateral plate mesenchyme and cranial neural
crest derivatives, migrate into the developing eye to form a variety
of ocular and extraocular structures (Gage et al., 2005; Williams
and Bohnsack, 2015). POM cells are known to be required for CFC,
with defects in lmx1b, Tfap2a/tfap2a, foxc1, nlz1 and Pitx2/pitx2
resulting in colobomas (Gage et al., 1999; Brown et al., 2009; Gestri
et al., 2009; McMahon et al., 2009; Bassett et al., 2010; Lupo et al.,
2011). Retinoic acid (RA) signaling also contributes to CFC, by
acting both directly on the ventral optic cup, as well as regulating
gene expressionwithin the POM (Lupo et al., 2011). Indeed, defects
in RA signaling have been shown to cause a reduction in Pitx2
expression in the POM, resulting in retention of the BM lining the
CF and colobomas (See and Clagett-Dame, 2009).

Of particular interest are the POM-derived endothelial cells
that migrate through the CF and into the vitreous to form the
hyaloid (Saint-Geniez and D’Amore, 2004; Alvarez et al., 2007;
Hartsock et al., 2014). Our data demonstrate that regions of BM
breakdown correlate with actin enrichment in POM cells within
the CF and that these cells are likely POM-derived endothelial cells
that express fli1a-driven transgenes and give rise to the hyaloid
vasculature (Fig. 4). Roles for endothelial cells during tissue mor-
phogenesis have been identified in the developing liver; for ex-
ample, endothelial cells are required for hepatic outgrowth, acting
prior to the formation of functional vessels (Matsumoto et al.,
2001), and they influence the apical-basal polarity of developing
hepatocytes (Sakaguchi et al., 2008).

We identified actin enrichment in POM cells coincident with
areas of BM degradation (Fig. 4), and, when combined with the
classic TEM studies of Isabelle Hero (Hero, 1990; Hero et al., 1991),
Please cite this article as: James, A., et al., (2016), http://dx.doi.org/1
we hypothesized that POM cells actively degrade the CF BM as
they transit through the CF. We examined BM breakdown in talin1
and cloche mutants (Figs. 5, 6). talin1 encodes a scaffold protein
linking integrins to the actin cytoskeleton, but little is known
about function during eye development. cloche mutants lack all
POM-derived ocular vasculature but surprisingly, despite being
microphthalmic, the early phases of eye development are fairly
normal in cloche, with pronounced retinal defects not detectable
until after 48 hpf, well beyond the window for BM breakdown in
most of the CF (Dhakal et al., 2015). Both mutants possessed de-
fects in BM breakdown (Figs. 5, 6), thus supporting a model in
which POM-derived endothelial cells and/or the hyaloid vascu-
lature itself, facilitate BM breakdown during CFC. Notably, BM
breakdown was delayed, but did eventually complete in cloche
mutants. These data suggest that the ocular vasculature is not the
only cell or tissue type required for BM breakdown and that there
is likely a hyaloid-independent component to BM breakdown.
When compared to cloche, the more severe BM breakdown and
coloboma phenotypes in tln1 mutants also suggest that whatever
cell or tissue type is required for efficient BM breakdown, it is
likely to do so in an actin-dependent fashion. The TEM studies of
Hero noted cellular protrusions from retinal cells in the CF that
correlated with regions of BM breakdown (Hero, 1990) and thus, it
is possible that retinal and/or RPE components of the CF also
participate in BM breakdown and fill such a role in cloche mutants.
Mechanistically, podosomes and invadosomes are known to
mediate focal BM breakdown in a variety of developmental and
cell biological contexts, including endothelial cells (Murphy and
Courtneidge, 2011; van den Dries et al., 2014) making them in-
teresting candidates for further analysis. Future studies will ex-
amine the BM breakdown and CFC phenotypes in loss-of function
mutants for podosome/invadosome components like tks4/sh3pxd2,
mmp2 and mmp14.

With respect to tissue fusion during CFC (Stage III), several gene
products have been identified that are required for fusion in the
CF, but the mechanisms underlying the fusion process are not yet
clear (Erdmann et al., 2003; Masai et al., 2003; Chen et al., 2012).
In addition to defects arising from loss of function of retinal genes,
disruptions to RPE specification and differentiation have also been
shown to result in colobomas. For example, disruption of Mitf or
an RPE-specific loss of β-catenin produces colobomas during
mouse eye development (Scholtz and Chan, 1987; Westenskow
et al., 2009), supporting the idea that the RPE also contributes to
CFC. CFC defects arising in these models are thought to result from
early Stage I defects in which overall optic cup development is
perturbed, but it is also possible that CFC defects reflect a role for
the RPE in tissue fusion itself. As in mouse and hamster (Geeraets,
1976; Hero, 1990; Hero et al., 1991), the RPE is inverted into the CF
during the early stages of CFC in zebrafish (Fig. 3 and data now
shown) supporting a potential role in mediating fusion.

Through in vivo imaging, F-actin staining and β-catenin im-
munohistochemistry, we determined the spatial and temporal
characteristics of tissue fusion in zebrafish. While in vivo time
lapse imaging provided a general indication to the timing of CFC,
β-catenin immunohistochemistry provided a more accurate mo-
lecular readout of fusion between the tightly apposed sides of the
CF. Given the transient enrichment of β-catenin at regions of
nascent adhesion, cadherin-mediated mechanisms are likely to be
involved in CF fusion. Indeed, multiple N-cadherin mutants exist in
zebrafish that present with colobomas (Liu et al., 2001; Erdmann
et al., 2003; Masai et al., 2003) although the cell biological me-
chanisms leading to these defects have not yet been resolved.
Other cadherins expressed in the zebrafish eye include R-cadherin
(Liu et al., 1999a, 1999b; Babb et al., 2005), cadherin 6 (Liu et al.,
2008), and protocadherin 9 and 17 (Liu et al., 2009; Chen et al.,
2013b), and these could also play a role in tissue fusion during CFC.
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Finally, the rapid turnover of β-catenin within the CF presents an
excellent model to study how formation and maintenance of ad-
herens junctions are regulated in vivo.
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