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Visual impairment and blindness is widespread across the human population,
and the development of therapies for ocular pathologies is of high priority.
The zebrafish represents a valuable model organism for studying human ocular
disease; it is utilized in eye research to understand underlying developmental
processes, to identify potential causative genes for human disorders, and to
develop therapies. Zebrafish eyes are similar in morphology, physiology, gene
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expression, and function to human eyes. Furthermore, zebrafish are highly
amenable to laboratory research. This review outlines the use of zebrafish as a
model for human ocular diseases such as colobomas, glaucoma, cataracts,
photoreceptor degeneration, as well as dystrophies of the cornea and retinal
pigmented epithelium.
I. Introduction
A. Overview

Visual impairments affect over 160 million people worldwide, of whom

37 million are blind.1 Major causes of blindness include cataracts, glaucoma,
age-related macular degeneration (ARMD) and diabetic retinopathy, and the
development of effective therapies for these disorders is of high priority. Model
organisms with similar physiology to humans are vital to understand underlying
developmental processes, identify potential causative genes for human disorders,
and develop therapies.

This review focuses on the zebrafish as a model organism for studying
human eye diseases. The zebrafish is a remarkably amenable model organism
for scientific research, and it combines advantages characteristic of invertebrate
models with those inherent to vertebrates for modeling human physiology.
As will be explained in the following sections, the zebrafish eye is similar in
morphology, physiology, gene expression, and function to the human eye.
Zebrafish researchers utilize mutant zebrafish recovered from forward genetic
screens along with a number of reverse genetic techniques to model many of
the major eye diseases which plague humans (Table I).
B. The Zebrafish as a Model Organism

The zebrafish, Danio rerio, is a common aquarium fish that originated in

the Ganges region of India.88 The rapid increase in its popularity for the study
of vertebrate development and genetics is mainly due to its transparent embry-
os that develop ex utero, making the visualization of developmental events
possible. In addition, its large clutch sizes and ease of maintenance, features
that are commonly associated with invertebrate model organisms such as
Drosophila, make it an attractive alternative to model species such as the
mouse. Zebrafish have a short generation time of 2–4 months and a single
mating pair can produce around 200 offspring on a weekly basis.89 These,
combined with the low relative cost of raising zebrafish, make it an ideal
model organism as evidenced by the rapid growth of the zebrafish research
community.



TABLE I
ZEBRAFISH MUTANTS AND MORPHANTS WITH OCULAR PHENOTYPES RELEVANT TO HUMAN DISORDERS AND ASSOCIATED PATHOLOGIES

Gene Mutant/morpholino Ocular phenotype References
Associated human ocular
diseasea OMIM

Coloboma
adenomatous polyposis coli (apc) Mutant Coloboma; defects in optic vesicle

patterning and optic fissure closure
2 Familial Adenomatous Polyposis 175100

bcl6 co-repressor (bcor) Morpholino Coloboma; microphthalmia 3 Oculofaciocardiodental and
Lenz microphthalmia

300485

cadherin 2 neuronal (cdh2,
glass onion)

Mutant Coloboma; optic fissure closure defect 4 – –

laminin, b1 (lamb1,
lamb1hi1113bTg), laminin,
g1 (lamc1, lamc1hi3890Tg)

Mutant Coloboma; basement membrane
defects

5 – –

paired box gene 2a (pax2a, no
isthmus)

Mutant Coloboma 6 Renal-coloboma syndrome 167409

patched1 (ptc1, blowout) Mutant Coloboma; defects in optic stalk
morphogenesis

7,8 – –

thioredoxin-related
transmembrane protein 3 (tmx3)

Morpholino Microphthalmia; coloboma 9 Microphthalmia and coloboma –

transcription factor ap2 alpha
(tfap2a)

Morpholino Coloboma 10 Branchio-oculo-facial syndrome 107580

zinc family member 2a (zic2a) Morpholino Coloboma; defects in optic stalk
morphogenesis and optic vesicle
patterning

11 – –

zinc finger proteins 703 and 503
(znf703,503, also known as nlz1
and nlz2)

Morpholino Coloboma; defects in optic vesicle
patterning and optic fissure closure

12 – –

Photoreceptors
cone transducin a (tca, no

optokinetic response f)
Mutant Reduced sensitivity to light by cones 13 – –

crumbs homolog 2 (crb2, oko
meduzy)

Mutant Photoreceptor defects 14 – –

(Continues)
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TABLE I (Continued)

Gene Mutant/morpholino Ocular phenotype References
Associated human ocular
diseasea OMIM

crumbs homolog 2, like (crb2l) Morpholino Photoreceptor defects 14 – –
dihydrolipoamide
S-acetyltransferase (pdhe2, no
optokinetic response a)

Mutant Blindness; photoreceptor synaptic
transmission defects

15,16 Pyruvate dehydrogenase
deficiency

–

dynactin 1a (dctn1a, mikre oko) Mutant Retinal degeneration 17,18 – –
dynactin 2 (p50), (dctn2, ale oko) Mutant Retinal degeneration 19 – –
erythrocyte membrane protein
band 4.1-like 5 (epb41l5, mosaic
eyes)

Mutant Photoreceptor defects 20,21 –

fleer (flr) Mutant Rod outer-segment defects 22,23 – –
intraflagellar transport proteins,
57, 80, 88, and 172 (ift57hi3417Tg,
oval(ift88), ift172hi2211Tg)

Mutants (ift57, 88,
172), Morpholino
(ift80)

Outer segment defects; retinal
degeneration

24–27 – –

membrane protein, palmitoylated
5a (mpp5a, nagie oko)

Mutant Disrupted RPE; retinal lamination
defects; photoreceptor defects

28,29 – –

Novel protein (partial optokinetic
response b)

Mutant Cone degeneration 30,31 – –

phosphodiesterase 6 alpha
(pde6a, eclipse)

Mutant Cone degeneration 32 – –

protein kinase C iota (prkci, heart
and soul)

Mutant Photoreceptor morphogenesis defects 33 – –

protocadherin 15b (pcdh15b) Morpholino Photoreceptor defects; visual function
defects

34 Usher syndrome 605514

TNF receptor-associated factor 3
interacting protein (traf3ip,
elipsa)

Mutant Photoreceptor defects; visual defects 22,35 – –

Unknown (brudas) Mutant Photoreceptor defects 22 – –
Unknown (niezerka) Mutant Photoreceptor defects 22,36 – –
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Unknown (nightblindness
a, b, e, f, g)

Mutant Visual function defects; retinal
degeneration (nba, nbe, nbf)

37–39 – –

Other retinal phenotypes
patched2 (ptc2, leprechaun) Mutant Müller glial reactivity; vitreoretinal

abnormalities
40 Basal cell naevus syndrome

(BCNS)
601309

phosphatase and tensin homolog b
(ptenb)

Mutant Ocular tumors 41 – –

RPE
choroideremia (chm) Mutant Retinal degeneration; RPE defects 42,43 Choroideremia 300390
protein kinase C iota (prkci, heart

and soul)
Mutant RPE morphogenesis defects 33 – –

silver homolog a (silva, fading
vision)

Mutant RPE defects; photoreceptor defects 44 – –

vacuolar protein sorting 18p
(vps18, vps18phi2499aTg)

Mutant Melanosome maturation defects;
reduced visual function

45 – –

vacuolar protein sorting 39
homolog (vps39, leberknodel)

Mutant RPE vesicle traffic defects; PR defects 46 – –

v-ATPase complex (multiple genes) Mutants Melanosome defects; photoreceptor
outer segment defects;

47 – –

Unknown (bleached) Mutant Pigmentation defect; blindness;
retinal degeneration

48 – –

Unknown (fade out) Mutant RPE defects; photoreceptor defects 49 – –
Unknown (gantenbein) Mutant Cone dystrophy; RPE degeneration 50 – –
Hyaloid Vasculature
forkhead box C1a

(foxc1a)þ forkhead box C1b
(foxc1b)

Morpholino
(coinjection)

Reduced hyaloid basement
membrane integrity

51 Axenfield–Reiger syndrome,
glaucoma

601090

heparan sulfate 6-O-
sulfotransferase 2 (hs6st2)

Morpholino Aberrant patterning of hyaloid
vasculature

52 – –

laminin, a1 (lama1) Morpholino Hyaloid vasculature
dysmorphogenesis

53 – –

laminin, a1 (lama1, bashful) Mutant No hyaloid vasculature 52 – –
mab-21-like 2 (mab21l2) Morpholino Reduced hyaloid vasculature 52 – –

(Continues)
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TABLE I (Continued)

Gene Mutant/morpholino Ocular phenotype References
Associated human ocular
diseasea OMIM

microfibrillar-associated protein
2 (mfap2)

Morpholino Reduced hyaloid vasculature
branching

52 – –

plexin D1 (plxnd1, out of bounds) Mutant Aberrant patterning of hyaloid
vasculature

52 – –

syndecan 2 (sdc2) Morpholino No vasculature on the lens 52 – –
Unknown (fused eyes) Mutant No hyaloid vasculature 52 – –
Unknown (margin affected) Mutant Reduced, then absent hyaloid

vasculature
52 – –

Unknown (platinum) Mutant Premature detachment of hyaloid
vasculature from lens

52 – –

Lens
cadherin 4, retinal (cdh4) Morpholino Small opaque lens 54 – –
CDP-diacylglycerol-inositol 3-

phosphatidyltransferase (cdipt,
lens opaque)

Mutant Lens cell hyperproliferation; lens
degeneration

55–57 – –

choroideremia (chm) Mutant Small opaque lens 58 Choroideremia 300390
coatomer protein complex, subunit

z1 (copz1, copz1hi528Tg)
Mutant Cortical lens defects 24 – –

connexin 48.5 (cx48.5) Morpholino Cataracts and small lens 59 Cataracts 121015
decapentaplegic and Vg-related 1

(dvr1)
Morpholino Retention of nuclei in lens fibers 60 – –

fibroblast growth factor 19 (fgf19) Morpholino Defective lens cell survival and
differentiation

61,62 – –

forkhead box E3 (foxe3) Morpholino Lens dysmorphogenesis; epithelial
cell hyperproliferation; defective
fiber differentiation

63,64 Congenital primary aphakia,
Peter’s anomaly, cataracts

601094

growth differentiation factor 6a
(gdf6a)

Morpholino Cortical lens defects; defective lens
gene expression

65,66 Microphthalmia 601147

Author's personal copy



heat shock cognate 70-kd protein
(hsp70)

Morpholino Immature lens 67 – –

heat shock transcription factor 1
(hsf1)

Morpholino Small lens 68 – –

integrator complex subunit 7
(ints7, ints7hi1548Tg,
ints7hi3649Tg)

Mutant Devere lens disorganization 24 – –

laminin, a1 (lama1) Morpholino Lens degeneration 69 – –
laminin, a1 (lama1, bashful) Mutant Lens degeneration, focal corneal

dysplasia
53,55,70–
72

– –

laminin, b1 (lamb1, grumpy,
lamb1hi1113bTg)

Mutant Cortical lens defects; lens dysplasia 5,58,72 – –

laminin, g1 (lamc1, sleepy,
lamc1hi3890Tg)

Mutant Cortical lens defects; lens dysplasia
and degeneration

5,24,72 – –

lengsin, lens protein with
glutamine synthetase domain
(lgsn)

Morpholino Lens dysmorphogenesis; lens fiber
defects

73 – –

mab-21-like 2 (mab21l2) Morpholino Lens cell death 74 – –
paired box gene 2a (pax2a, no

isthmus)
Mutant Small opaque lens by 6 dpf 58 Coloboma 167409

paired box gene 6b (pax6b) Morpholino Variable phenotype: small lens to
absent lens

75 Peter’s anomaly, aniridia 607108

paired box gene 6b (pax6b,
sunrise)

Mutant Small lens 76,77 Peter’s anomaly, aniridia 607108

paired-like homeodomain
transcription factor 3 (pitx3)

Morpholino Lens dysmorphogenesis: disordered
epithelial cells, defective fiber
differentiation, fiber cell death

63,78,79 Cataracts, anterior segment
dysgenesis

602669

patched 1 (ptc1) Morpholino Small, dysplastic lens 7 – –
retinal homeobox gene 3 (rx3,

chokh)
Mutant Small lens, no retina 80 Anophthalmia/microphthalmia 601881

RNA binding motif 42 (rbm42,
rbm42hi2735ATg)

Mutant Cortical lens defects 24 – –

(Continues)
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TABLE I (Continued)

Gene Mutant/morpholino Ocular phenotype References
Associated human ocular
diseasea OMIM

syndecan 2 (sdc2) Morpholino Small lens 52 – –
ubiquitin-like, containing PHD

and RING finger domains, 1
(uhrf1, uhrf1hi272Tg,
uhrf1hi3020Tg)

Mutant Lens disorganization and
degeneration

24 – –

WD repeat domain 36 (wdr36,
wdr36hi3630aTg)

Mutant Thickening of lens epithelium;
cortical lens defects; lens
degeneration

81 Primary open-angle glaucoma 609669

Unknown (bumper) Mutant Lens epithelial cell
hyperproliferation, lens fiber
degeneration

77,82,83 – –

Unknown (chiorny) Mutant Small lens 84 – –
Unknown (cloche) Mutant Opaque lens with retained nuclei 85 – –
Unknown (disrupted lens) Mutant Disorganized lens fibers 55,70 – –
Unknown (dou yan) Mutant Small lens 86 – –
Unknown (korinthe) Mutant Lens degeneration 77 – –
Unknown (margin affected) Mutant Small lens 52 – –
Unknown (platinum) Mutant Small lens 52 – –
Unknown (rosine) Mutant Lens degeneration 77 – –
Unknown (yol) Mutant Lens degeneration 87 – –

Due to space limitations, not all relevant mutant and morphant zebrafish are included in this table.
aOnline Mendelian Inheritance in Man (OMIM) entries are listed if the disrupted zebrafish gene is orthologous to a human gene associated with an ocular disease.
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Since its introduction as a model organism three decades ago, advances in
available technologies pertaining to zebrafish research have quickly closed
the gap with those available for other model organisms (see Section I.C).
Importantly, the Zebrafish Information Network (ZFIN) maintains a central
comprehensive online database that provides researchers with access to infor-
mation and services that include gene expression pattern databases, mutant
and transgenic lines, and links to a fully sequenced genome (www.zfin.org).
C. Tools and Techniques

External development of zebrafish embryos provides the opportunity for

various manipulations from the time of fertilization. These include the injection
of tracer dyes or of mRNA (for transient expression of protein). Established
fate maps90,91 enable the transplantation of labeled blastula- or gastrula-stage
donor cells into specific regions of host embryos. When the donor and host are
of different genetic backgrounds, the resulting chimeric zebrafish can be used
to determine whether a gene whose mutation is embryonic lethal early in
development has a role later in the life of the organism, or to establish the
cell or tissue autonomy of a mutant phenotype.92 Of particular relevance to this
review, entire lenses can be transplanted between embryos to determine lens
versus retinal contribution to an ocular phenotype.93
1. TARGETED KNOCKDOWN OF GENE EXPRESSION
Homologous recombination strategies utilized in other model organisms to
introduce specific mutations into the genome are not yet available in zebrafish.
However, specific and heritable targeted mutagenesis has recently been
effected with zinc-finger nucleases.94,95 Additionally, transient gene knock-
down is commonly performed in zebrafish by injection of morpholinos to
block gene expression.96,97 Morpholinos are effective and inexpensive oligo-
meric constructs designed to bind mRNA and prevent proper splicing or
translation. Morpholinos are effective for several days, and their transient
activity is sufficient for the embryonic timeframe of many zebrafish experi-
ments. Morpholinos can also be introduced into specific tissues later in devel-
opment by electroporation,98 and photoactivatable morpholinos (which can be
activated in specific cells of transparent embryos by a laser) allow precise
spatiotemporal control of gene knockdown.99 Thus, zinc finger nucleases and
morpholinos complement the catalog of mutant fish lines generated from
mutagenesis screens.
2. TRANSGENIC TECHNIQUES
Transient or stable introduction of transgenes in zebrafish is effected in a
number of ways. Injection of DNA into a fertilized egg results in mosaic,
transient expression in the embryo and low efficiency integration into the

http://www.zfin.org
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genome.100–102 Tol2 transposon-mediated strategies result in much higher
efficiency transgene integration,103 and transgenic lines of zebrafish are rou-
tinely created by utilizing this technique. Specific spatiotemporal control of
transgene expression is achieved by placing the transgene under the control of
a ubiquitous promoter,104 heat-shock promoter,105 or tissue-specific enhancer/
promoter elements.106 In addition to spatiotemporal control over expression of
genes of interest, these techniques may be utilized to express dominant nega-
tives107 or genetically encoded reporter constructs such as GFP.104 Genetically
encoded photoconvertible proteins, such as Kaede, may be utilized for lineage-
tracing experiments.108 Transgenes can also be used to ablate specific cells by
expression of either diphtheria toxin109 or nitroreductase (in which case cell-
autonomous ablation is not elicited until the application of a prodrug).110

Many of the transgenic tools originally implemented in mouse and
Drosophila research are also utilized in zebrafish. The Gal4–UAS (upstream
activation sequence) system for ectopic gene expression involves spatiotempo-
rally controlled transcription of gal4 under a promoter of choice. The Gal4
protein then binds to and activates expression of genes downstream of its
UAS.106,111,112 Cre–LoxP recombination,113 which allows for excision or inver-
sion of a segment of transgene DNA upon activation of Cre, has also been
utilized in zebrafish.114 Cre recombinase can be activated in zebrafish in many
ways, including most recently the photo-uncaging of 4-OH-cyclofen for activa-
tion of a ligand-inducible Cre.115 Therefore, the future of zebrafish transgenesis
is extremely exciting.
D. Genetic Screens

Large-scale genetic screens inDrosophila andCaenorhabditis elegans have

identified numerous genes required for embryonic development.116,117 Similar
approaches were thought to not be feasible in vertebrates due to long genera-
tion times and small number of progeny of traditional vertebrate models such
as the mouse and chick.89 However, the pioneering work of George Streisinger
nearly three decades ago established the zebrafish as a powerful genetic model
organism for the identification of genes important for vertebrate develop-
ment.118,119 Two large-scale genetic screens performed in Christiane
Nüsslein-Volhard and Wolfgang Driever’s labs followed 15 years later and
were published in a special issue of the journal Development, describing
mutations affecting various aspects of vertebrate development.120,121 Since
then, multiple large- and small-scale mutagenesis efforts have produced
numerous mutant lines that have been studied to better understand vertebrate
development, as well as disease.

Most genetic screens in zebrafish utilize the chemical mutagen ethylnitro-
sourea (ENU) due to its high mutagenic efficiency (Fig. 1A).125,126 Like ethyl
methanesulphonate (EMS), which is commonly used in genetic screens in
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FIG. 1. Chemical versus insertional mutagenesis screens in zebrafish. In chemical screens (A),
the mutagen ethlynitrosourea (ENU) is used to induce mutations in the adult male germline. The
mutagenized males (F0 generation) are then outcrossed to generate a heterozygous F1 population.
F1 progeny are crossed again to wild-type fish, giving rise to F2 families that carry a specific
mutation. F2 siblings are bred to each other in order to generate an F3 generation out of which 25%
will be homozygous for the mutation.122,123 In an insertional screen (B), a retrovirus is injected into
fertilized eggs to generate transgenic adults (F0) that will be subsequently bred to generate an F1
generation with multiple viral inserts. PCR and Southern blot analysis is then performed in order to
identify F1 fish that carry multiple inserts. As in a chemical screen, F1 fish are bred to generate F2
families; those will be subsequently bred to siblings to give rise to F3 progeny that will be screened
for physiological and/or behavioral phenotypes.123,124
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Drosophila, ENU is an alkylating agent that produces point mutations in the
adult germline. While ENU mutagenesis has proved to be a powerful method
for the induction of point mutations in the zebrafish, the identification of the
mutated gene can be laborious. Positional cloning of a single mutation requires
the work of one researcher for approximately 6–12 months.127 A separate
screen performed in Nancy Hopkins’ lab used retroviral insertional mutagene-
sis as an alternative (Fig. 1B). Since the genetic sequence of the insertion is
known, the location of the retroviral insertion can be assayed using standard
PCR techniques, quickly and reliably revealing the affected gene.124,128 While
the efficiency of mutagenesis using retroviral insertion is estimated to be about
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one-seventh that of ENU mutagenesis, the cloning of one mutation requires
only 3–4 weeks to perform.127 The main disadvantage of insertional mutagene-
sis is that, due to low efficiency, larger screens need to be performed as
compared to ENU-based screens in order to identify equal numbers of
mutants. As a result, the need for larger facilities make these screens impracti-
cal for most academic labs.

The identification of ENU-induced point mutations can be simplified using
a technique known as TILLING (Targeted Induced Local Lesions in Gen-
omes). Unlike traditional screens in which mutants are isolated in the F3
generation and then positionally cloned, with TILLING mutations can be
identified in the F1 generation. Mutagenized males are bred to generate
large populations of F1 offspring whose DNA is analyzed by PCR in order to
identify mutations in a gene of interest. A mutation of interest is then isolated
by outcrossing a single identified carrier.129 This approach has generated over
150 loss-of-function alleles yet to be published.130 In addition, a consortium has
been recently established to consolidate TILLING efforts, greatly improving
the likelihood of finding mutations of interest in the zebrafish genome.
Researchers can now place requests for mutations in specific genes online
(www.sanger.ac.uk/projects/D_rerio/mutres).

Mutants isolated from genetic screens can further be used to screen for
small molecules that might suppress the mutant phenotype. These compounds
can then be further studied as potential therapeutic agents for a particular
defect or disease.131 Small molecule screens, like genetic screens, utilize the
already mentioned advantages of zebrafish: large clutch size, rapid develop-
ment, and transparency of the embryos allowing for the rapid screening of
compounds that affect certain aspects of development. The dosage, as well as
the time during development of administration can be controlled and the
effects on embryonic development assayed by various methods such as in situ
hybridization, vital dyes, and transgenics to visualize effects on specific tissues,
as well as behavioral assays.132–135 Since the first large-scale small molecule
screen was published 10 years ago,136 multiple screening efforts have identified
compounds that affect various biological processes including cell cycle and
cancer, control of stem cell populations, and the formation of retinal
vasculature.133,134,137
E. Eye Development and Anatomy

The zebrafish has long been recognized as a useful model for the study of

human ocular development and disease.138–141 Detailed characterization of the
embryonic development of the posterior segment of the eye, which includes
the neural retina142 and the RPE,143 and the anterior segment (which includes
the lens, cornea, ciliary body, and the various tissues of the iridocorneal

http://www.sanger.ac.uk/projects/D_rerio/mutres
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angle144–156), has not only shed light on the sequence of events in vertebrate
eye development, but has also highlighted the similarities in the architecture of
the zebrafish eye to that of the human eye.

In zebrafish, eye development is rapid. The optic vesicle, which will ulti-
mately give rise to the neural retina and the retinal pigment epithelium,
evaginates from the forebrain at around 12 hours postfertilization (hpf) and
remains attached to and continuous with the forebrain through a transient
structure called the optic stalk (Fig. 2). The optic vesicle then gives rise to the
optic cup through a series of morphogenetic events that occur from about 16 to
20 hpf.156 Morphogenesis of the optic cup continues as the optic fissure forms
ventrally by 24 hpf and subsequently closes by 48 hpf. Neurogenesis begins at
28 hpf and by as early as 72 hpf zebrafish embryos exhibit visual function.155

The anterior segment of the embryonic eye develops concurrently with the
events mentioned thus far. At 16 hpf, surface ectoderm cells overlying the optic
cup thicken to form the lens placode (Fig. 3; Ref. 145), the lens mass delami-
nates from the surface ectoderm at approximately 24 hpf, and fully detaches by
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FIG. 2. Development and morphogenesis of the zebrafish eye. Eye development commences
around 12 hpf as the optic vesicle (OV) evaginates from the forebrain (FB) (A). The optic vesicle
then elongates into a flattened wing-like structure at around 16 hpf (B) that is attached to the
forebrain through a transient structure called the optic stalk (OS in C). The eye subsequently
rotates and invaginates (C) to form the ‘‘optic cup’’ at around 24 hpf as depicted in D (anterior view)
and D0 (lateral view). Morphogenesis of the embryonic eye is mostly complete by 48 hpf as the optic
fissure (OF in D0) is closed and neurogenesis of the retina is underway.142,156,157
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FIG. 3. Early lens development in zebrafish and mouse. After.146 In zebrafish (A–E) and
mouse (A0–E0), the surface ectoderm overlying the optic cup (A, A0) thickens to form the lens
placode (B, B0). In zebrafish, the lens mass delaminates from the surface ectoderm (C, D), while in
mouse the lens placode evaginates to form the lens vesicle (C0, D0). Primary lens fibers in the
zebrafish elongate within the lens mass in a circular fashion (E), whereas the primary lens fibers in
the mouse elongate to the anterior to fill the lens vesicle space (E0). The remaining surface
ectoderm becomes the corneal epithelium in both zebrafish and mouse.145,147,155,158 Anterior is
to the left.
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26 hpf.145,147,148,155,156 The surface ectoderm overlying the lens becomes the
corneal epithelium, which is two cell layers thick by 30 hpf.150 Migratory
periocular mesenchymal cells (which first enter the anterior chamber of the
eye at 24 hpf) coalesce to form the corneal endothelium between 30 and 36
hpf.148,150,155,156

Humans are a diurnal species, and day-time vision is predominantly
mediated by cone photoreceptors in the retina. In contrast to nocturnal mice
and rats, whose retinas contain few cones, larval zebrafish vision is mediated
almost entirely by cone photoreceptors.159 As in humans, the mature zebrafish
retina is composed of three nuclear layers separated by two plexiform layers
(Fig. 4). Zebrafish possess four types of cones (blue, UV, and red/green double
cones) and one rod cell type.160 Rod and cone cell bodies reside in the outer
nuclear layer (ONL), while the inner nuclear layer (INL) is occupied by
amacrine, horizontal, bipolar cells, and Müller glia. Visual signals originating
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FIG. 4. Structure of the zebrafish eye. (A) Transverse histological section of a wild-type
zebrafish eye at 5 dpf. (B) Illustration of the major neuronal and glial cell types in the zebrafish
retina. Rods and cones relay sensory input to retinal interneurons (Horizontal and Bipolar Cells).
Following synaptic interactions with Amacrine Cells, the information is passed to the output
neurons, the Ganglion Cells. Müller glia perform multiple functions in the retina, including
maintaining retinal health and structure (see Section II.D). C, Cones; R, Rods; HC, Horizontal
Cells; BP, Bipolar; AC, Amacrine Cells; RGC, Ganglion Cells; MG,Müller Glia. (C) Diagram of the
zebrafish lens at 5 dpf. Lens epithelial cells surround the anterior periphery; proliferation of these
cells is mainly restricted to the lateral proliferative zone. Epithelial cells at the transition zone exit
the cell cycle, migrate, elongate, and degrade their light-scattering organelles to become new
secondary fibers. Tightly packed lens fibers which extend from the posterior suture to the anterior
suture make up the bulk of the lens.145–148,247–249 ECs, lens epithelial cells; LPZ, lateral prolif-
erative zone; TZ, transition zone; Fs, lens fibers; AS, anterior suture; PS, posterior suture.
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in the photoreceptors are transmitted through the retina to the ganglion cells,
which make up the ganglion cell layer (GCL); their axons then relay the signal
to the brain.142,161
II. Posterior Segment
A. Coloboma

Early during vertebrate eye development, the optic vesicle evaginates from

the forebrain and ultimately forms the optic cup (see Section I). As a result of a
series of morphogenetic processes that follow, a transient gap called the optic
fissure forms ventrally and subsequently closes by the fusion of the surrounding
tissue.156,162 Failure of optic fissure closure is the underlying cause of colobomas,
which ultimately affect one or more parts of the eye including retina, choroid, iris
cornea, lens, ciliary body, and optic nerve.163 In humans, the incidence of
coloboma is estimated at around 1 per 10,000 births164–166; severe colobomas
may cause as much as 10% of childhood blindness.167 The clinical presentations
of colobomas are varied, as numerous genetic loci have been associated with this
diverse class of ocular pathologies.168 While the causes underlying most human
coloboma conditions remain unknown, studies in zebrafish have contributed to
our understanding of the developmental bases of optic fissure closure.
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A gene expression profiling study was conducted recently by Brown et al.12

to identify genes whose transcript levels are enriched in the optic fissure of the
mouse. Two related genes, Nlz1 and Nlz2, were shown to be expressed in the
optic fissure; subsequent morpholino knockdown of both in zebrafish resulted
in coloboma. Brown et al. demonstrated that nlz1and nlz2 may function in the
optic fissure by directly regulating the expression of the transcription factor
pax2a. In nlz1/2-deficient embryos, pax2a expression was drastically reduced,
and both the nlz1 and nlz2 proteins bound the pax2 promoter in vitro, suggest-
ing direct transcriptional regulation. In humans, mutation in the PAX2 gene
result in coloboma as part of renal-coloboma syndrome (OMIM 120330),169

and the human PAX2 and zebrafish pax2a genes are expressed in the develop-
ing optic stalk and optic fissure.6,170 Interestingly, the zebrafish No-isthmus
(noi) mutant line, which carries a nonsense mutation in the pax2a gene, exhibit
optic fissure closure defects, resulting in coloboma.6

Additional studies in zebrafish have shown that pax2a is transcriptionally
regulated by Sonic hedgehog (Shh), a well-studied developmental morphogen.
In the zebrafish mutant cyclops, in which a mutation affecting the nodal
pathway results in a deficiency in Shh signaling, pax2a transcript levels are
highly reduced in the optic stalk.171 In blowout (blw) mutants, which possess a
loss-of-function mutation in the patched1 gene, the expression domain of pax2a
is increased, resulting in an enlarged optic stalk and colobomas.7,8 The Patched1
protein is the receptor and negative regulator of the Hedgehog pathway; muta-
tions in patched genes are known to result in an overactive Hedgehog path-
way.172 Interestingly, colobomas have been described in a family carrying
specific deletions in the human SHH gene,173 suggesting that the genetic
interaction between Shh and pax2a in zebrafish might be conserved in humans.
This interaction was recently shown in zebrafish to be mediated by zic2a, a
transcription factor whose activity is controlled by Shh. zic2a restricts pax2a
expression to the optic stalk, and loss of zic2a activity results in the expansion of
pax2a expression into the retina, resulting in coloboma.11 While human ZIC2
mutations have not yet been associated with the formation of coloboma, they
have been linked to holoprosencephaly, a forebrain defect frequently associated
with colobomas.11,174 Studies in zebrafish have therefore identified ZIC2 as an
additional candidate gene in human colobomas.

The Hedgehog pathway has also been shown to control the expression of
vax genes (vax1 and vax2), whose function has also been shown to be important
for the proper development and specification of the optic stalk and ventral
retina, tissues in which they are normally expressed.175,176 Morpholino knock-
down of both vax1 and vax2 in zebrafish resulted in the loss of optic stalk and
ventral retinal tissue identity, and the presence of colobomas. Overexpression
of Shh results in the expansion of vax gene expression domains, while blocking
the Hedgehog pathway reduces vax gene expression. While Shh appears
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to control the expression of both pax2a and vax genes, these likely act in parallel
to specify optic stalk identity, as the experimental loss of pax2a does not lead to
transcriptional loss of vax genes, and vice versa.176 Since both pax2a and vax
genes encode transcription factors, it remains to be seen what factors might act
downstream of pax2a and to directly control the proper development of the
optic stalk and ventral retina.

While the Hedgehog pathway seems to play a central role in dictating optic
stalk identity and proper optic fissure closure, other developmental pathways
have been implicated in proper morphogenesis of the eye. The requirement of
retinoic acid (RA) during ocular development, for example, is well established.
RA is derived from vitamin A, which has been linked to ocular pathologies in
humans, including coloboma.177 In zebrafish, exposure to exogenous RA early
during eye development results in an enlarged optic stalk and, depending on
the dose of RA, duplication of the ventral retina.178,179 Conversely, embryonic
exposure to citral, which blocks RA synthesis, results in optic stalk and ventral
retinal loss and ocular coloboma.180 In addition, morpholino knockdown of
bcox, an enzyme critical for the synthesis of RA, results in numerous develop-
mental phenotypes, including coloboma.181

A possible relationship between RA synthesis and ocular colobomas has
emerged through the characterization of the zebrafish adenomatous polyposis
coli (apc) mutant. Human mutations in APC, a well studied tumor suppressor,
underlie familial adenomatous polyposis syndrome.182 These patients suffer
from failure in the development of the ventral retina and coloboma, pheno-
types that are also found in zebrafish apc mutants. Through elegant gain- and
loss-of-function experiments, Nadauld et al.2 demonstrated that Apc regulates
RA synthesis indirectly through the regulation of Rdh5, an enzyme responsible
for RA synthesis in the ventral retina. These findings suggest that a deficiency
of RA, a vitamin A derivative, might underlie ocular phenotypes in familial
adenomatous polyposis syndrome.

The expression of RA synthesizing enzymes in the optic vesicle and optic
cup in zebrafish, chick, and mouse suggests that RA is required autonomously
in the eye for proper ocular development.183–185 However, surprisingly, studies
in mouse have demonstrated that RA activity in the neural crest-derived
periocular mesenchyme (POM) is responsible for early eye morphogenesis.186

Consistent with these findings, migration defects and subsequent apoptosis of
POM in the zebrafish lmx1b morphant lead to morphogenetic defects in the
optic fissure and colobomas. Loss of lmx1b results in a transient upregulation of
Fgf signaling, which in turn at least partially affects proper patterning and
morphogenesis of the embryonic eye.187

The developmental pathways discussed thus far most likely regulate optic
fissure closure indirectly, through the regulation of other factors. Studies in
zebrafish have also suggested that the molecular mechanisms underlying optic
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fissure closure are likely to involve interactions between the cells of the retina/
optic stalk with the extracellular matrix (ECM). Mutations in laminin b1 and g1
(lamb1 and lamg1), for example, result in disruptions in basement membrane
integrity and the presence of a number of ocular phenotypes including colo-
boma.5,24 Laminins are major components of the ECM, which serves as a
scaffold for tissue morphogenesis, as well as a site for the deposition of growth
factors such as Fgf and Hedgehog ligands. In the future, it would be interesting
to determine whether ocular phenotypes in laminin mutants might be a result
of misregulation of these signaling pathways and/or a consequence of morpho-
genetic defects due to perturbed cell–ECM interactions.
B. Photoreceptors

Photoreceptor degenerations are the most common form of blindness in

the Western world and involve the loss of vision due to dystrophy and/or death
of retinal photoreceptors. These pathologies can be roughly divided into those
conditions that initially affect rod photoreceptors, such as retinitis pigmentosa
(RP), and those that initially affect cone photoreceptors, such as macular
degeneration.141 While photoreceptor degeneration can also be caused indi-
rectly by primary defects in the RPE, which serves an important function in
photoreceptor health and homeostasis, this topic will be discussed in a later
section (see Section II.C).

Photoreceptors are highly polarized sensory cells that consist of an inner
segment (IS) that is connected to an outer segment (OS) by a highly modified
cilium (Fig. 5).189 In mature photoreceptors, proteins that are required for
growth and maintenance of photoreceptor OS’s, as well as for phototransduc-
tion, are transported along polarized microtubules from the basal IS to the
apical OS. Photoreceptors are similar to epithelial cells in that their surfaces are
divided into apical and basolateral domains by cell junctions. Their centro-
somes are located at the apical surface, while their nuclei reside basally.190

Proper development and subsequent maintenance of vertebrate photorecep-
tors relies on the establishment of proper apical–basal polarity, as well as the
function of the transport machinery. It is therefore not surprising that of the
more than 100 genetic loci known to cause photoreceptor degenerations in
vertebrates, most affect the structure and function of the OS.191

Genetic screens in zebrafish have shed light on the molecular bases of these
cellular functions by the isolation of mutants in which photoreceptor develop-
ment and/or maintenance are defective.24,192,193 One such mutant,mosaic eyes
(moe), was found to contain expanded apical features in photoreceptors.20,21

The moe locus encodes a FERM-domain containing protein that forms a
complex with Crumbs proteins, which in turn have been shown to be critical
for apical–basal polarity in Drosophila, as well as vertebrates.194–196 Interest-
ingly, mutations in the human orthologue of Crumbs, CRB1, are associated



Cilium

Apical

Nucleus
Inner
segment

Outer
segment

Synaptic
terminal

Rod Cone

Basal

FIG. 5. Structure of rod and cone photoreceptors. Photoreceptor cells are composed of an
outer segment that contains visual pigment-bound membrane disks. The inner segment is the
polarized cell body of the photoreceptor, where the nucleus resides basally and the cilium originates
apically and extends into the OS. The synaptic terminal forms synaptic connections to the inter-
neurons of the retina, relaying visual input.161,188
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with retinal photoreceptor dystrophies such as RP 12197 and Leber’s congenital
amaurosis (LCA1; Ref. 198,199). Other zebrafish mutants, such as nagie oko
(nok) and heart and soul (has) do not only phenocopy the moe mutant pheno-
type, but the proteins that they encode (Pals1 and PKCi, respectively) also
interact biochemically with Moe.20 Moreover, morpholino knockdown of
crb2b, a zebrafish Crumbs paralog, results in the reduction of IS size.14

These studies have therefore begun to uncover the role of the Crumbs complex
in vertebrate photoreceptor development and disease.

The formation of correct apical–basal polarity depends not only on the
proper function of cell polarity determinants, but also on their transport and
localization. Photoreceptors in the ale oko (ako) mutant retina accumulate the
apical determinants Pals1 and PKCl in their cell bodies and exhibit extensive
photoreceptor death late in development.19 The ako locus encodes the p50
subunit of the dynactin complex, which serves an important role in the transport
of cargo along microtubules as part of the dynein motor complex.200 In another
mutant, mikre oko (mok), which possesses a mutation in dynactin-1, retinal
degeneration is at least partially due to mislocalization of photoreceptor nuclei.
Surprisingly, unlike ako mutants, apical determinants such as Crumbs and
aPKCl are not mislocalized, suggesting that degeneration in these mutants is
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not due to loss of cell polarity. Experimental mislocalization of the nucleus by the
overexpression of the dynein motor resulted in photoreceptor cell death, sup-
porting the role of nuclear position in photoreceptor survival.201 While nuclear
positioning defects inmok photoreceptors seems to have a cell-autonomous role,
other noncell autonomous components seem to play a role inmok degeneration.
Mosaic analyses have revealed that mutant photoreceptors display over a 2.5-fold
increase in survival when placed in a wild-type environment.17 This finding
suggests that photoreceptor health and survival depends on environmental
cues from surrounding cells. These findings are consistent with defects asso-
ciated with some human degenerations, such as RP, where an initial defect in the
rod specific rhodopsin ultimately results in the loss of both rods and cones.202

Transport from the cell body to the OS is also important to replace OS
components that are lost due to the continual phagocytosis of photoreceptor
OS’s by the overlyingRPE.203 In photoreceptors, as in cilia, transport occurs by a
process known as Intraflagellar Transport (IFT) and mutations in IFT compo-
nent genes such ift57, ift80, ift88, and ift172 result in OS atrophy and/or
complete loss of OS’s in zebrafish.24–26 Mutations in the elipsa gene, which
encodes a protein that is thought to facilitate IFT,35 result in early photoreceptor
loss,22 while morpholino knockdown of multiple subunits of the retrograde IFT
motor dynein-2 has highlighted the importance of IFT in proper OS elongation
and visual function.204 Photoreceptor degenerations relating to defective IFT
are some of the many cilia-related phenotypes associated with Bardet–Biedl
Syndrome (BBS),205 and the further study of the function of IFTcomponents in
zebrafish might prove to be instrumental in gaining a better understanding of
the molecular causes underlying BBS-related ocular pathologies.

While the mutants described thus far in this section were isolated in genetic
screens utilizing mainly histological methods to detect photoreceptor defects,
others were isolated in behavioral screens.15,82,206,207 One such screen took
advantage of the ability of zebrafish to exhibit vision-dependent behavior as
early as 3 dpf (days post fertilization). Brockerhoff et al.15 first used the
optokinetic response assay (OKR) on mutagenized embryos to detect defects
in visual function. A second assay involved the use of electroretinogram (ERG)
recordings to identify whether isolated mutations affect outer retinal function.
From this screen, 18 mutants were isolated that were determined to have
reduced visual function. One, no optokinetic response a (noa), possessed no
gross photoreceptor abnormalities at 5 dpf (days post fertilization), but was
found to be blind, as well as lethargic, and died prematurely. Analysis of the noa
mutation revealed a deficiency in a subunit of the pyruvate dehydrogenase
(PDH) complex, which regulates energy production in cells. The noa mutant
line has been used as a model for the study of PDH deficiency (OMIM
245348), a human disorder that, like the zebrafish model, results in blindness,
neurological defects, and early death.16 Since current treatments for PDH
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deficiency in humans have resulted in limited success, Taylor et al. utilized noa
mutants to test a ketogenic diet which has shown some success in alleviating
PDH deficiency symptoms in a limited number of human patients. Adminis-
tration of this special diet restored normal behavior in noa mutants, high-
lighting the potential of studying PDH deficiency therapies in the noa mutant
line.

Another mutant, no optokinetic response f (nof) was found to possess a
mutation in the a subunit of cone transducin (Tca), a G-protein required for
phototransduction. In human patients suffering from a condition known as
achromatopsia (OMIM 139340), mutations in Tca underlie loss of color vision.
In nof mutants, cone development occurs normally; they are, however, up to
1000� less sensitive to light, as detected by recordings of single photorecep-
tors. Extensive analysis of cone light responses revealed that residual photo-
transduction is light dependent, but transducin independent. Caþ 2 influx,
which is important for photoreceptor light adaptation and was previously
thought to be controlled by transducin, was still detectable in nof mutants.
This study therefore revealed that some Caþ 2 influx in cone photoreceptors
might be transducin independent.

In a separate screen, dominant mutations that cause photoreceptor degen-
eration in adult zebrafish was performed in order to isolate genetic mutants
that could be later used to study human inherited night blindness such as
RP.37,38 In the case of RP, many genetic loci underlie this group of disorders.
However, only about half of the cases of dominant RP have been linked to
specific mutations at the time the screen was performed.38 Li et al. therefore
screened mutagenized adult zebrafish by utilizing a known escape response
exhibited by the fish. A lack of such response to a threatening cue was inter-
preted as a loss of vision, which was later confirmed using ERG recordings.
In all, seven heterozygous mutants were isolated (nightblindness a, b, c, d, e, and
f), out of which six exhibited photoreceptor degeneration.38,39,208,209 Four of the
six were found to be embryonic lethal as homozygotes, suggesting that the
mutated genes underlying the photoreceptor phenotypes have other critical
functions during embryonic development. This finding highlights the impor-
tance of such screens for the identification of dominant mutations that might
not be easily isolated in traditional screening due to early embryonic lethality.
C. RPE

The RPE is a monolayer of pigmented cells that serves in the protection

and maintenance of photoreceptors, and is therefore essential for visual func-
tion. In addition to its role in absorbing excess light entering the eye, the RPE
transports essential nutrients from the blood to photoreceptors, while remov-
ing ions, water, and metabolic end products from the retina to the blood.
Vertebrate phototransduction depends on the conversion of all-trans-retinal
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to 11-cis-retinal through a series of biochemical reactions termed the retinoid
cycle, and most of these essential reactions are carried out by the RPE rather
than photoreceptors.210 Finally, the RPE supports photoreceptor renewal by
the daily phagocytosis of about 10% of OS volume, while the photoreceptor
itself regenerates roughly the same volume each day to maintain proper OS
length.211 Failure of any of these functions often results in retinal degeneration
and loss of vision (212).

An important question in the study of many types of retinal degenerations
is whether photoreceptor degeneration occurs due to a primary defect in
photoreceptors themselves or as a secondary consequence of RPE degenera-
tion. Since in many cases defects in both photoreceptor and RPE are present, a
cause-and-effect relationship cannot be easily established between these cell
types. Krock et al.42 studied this relationship in the zebrafish rep1/chm mutant
line, which exhibits retinal phenotypes consistent with those found in humans
suffering from choroideremia, a form of hereditary retinal degeneration asso-
ciated with mutations in the human REP1 gene. Rep proteins are involved in
the posttranslational modification of Rab protein, and are therefore critical for
vesicle trafficking. Since both photoreceptors and the RPE depend on vesicle
trafficking for transport of material (such as opsin) to the OS and degradation of
phagocytosed OS material, respectively, the initial defect due to the rep1
mutation could potentially lay in either tissue. Through the use of mosaic
analysis, Krock et al. showed a loss of rep1 in the RPE is sufficient to cause
photoreceptor degeneration and results in the localized accumulation of OS
material. These findings, together with the observation that opsin was not
mislocalized in rep1 photoreceptors suggest that defective cellular processes
within the RPE are the primary cause of photoreceptor degeneration in
choroideremia patients. In a separate study, however, Moosajee et al.43 showed
that zebrafish do not possess an orthologue of a second human REP gene,
REP2. REP2 plays an essential role in the pathogenesis of choroideremia as its
function is thought to compensate for the loss of REP1. The authors of the
study therefore concluded that the rep1 mutant line may not be a suitable
model for the study of choroideremia in its present form.43

Defects in vesicle trafficking, formation, and/or fusion are known to be the
underlying cause of many human ocular diseases such Chediak–Higashi syn-
drome (CHS, OMIM 214500), Hermansky–Pudlak syndrome (HPS, OMIM
203300), and Griscelli syndromes (GS1-3, OMIM 214450, 607624, and
609227). The pathologies of these human syndromes include hypopigmenta-
tion of the RPE, as well as loss of visual function. The RPE contains lysosome-
related organelles known as melanosomes that synthesize and store melanin,
the main pigment present in the melanosomes of the RPE.213 Proper fusion of
lysosome-related organelles depends on the homotypic fusion and vacuolar
protein sorting (HOPS) complex, as it is required for SNARE complex
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assembly. A model for the study of human conditions such as CHS and HPS has
emerged recently in the zebrafish leberknödel (lbk) mutant line. lbk mutants
possess a mutation in the vam6/vps39 gene, which encodes a component of the
HOPS complex. Hypopigmentation of the lbk RPE, a common characteristic of
vesicle traffic defects, results from a defect in melanosome maturation, and the
RPE contains vesicles containing undigested photoreceptor OS’s. As a result,
OS’s are shortened and lbkmutants display reduced visual function.46 A mutant
in another HOPS complex component, vps18, also possesses immature mela-
nocytes and hypopigmentation, and can serve as an additional model for the
study of the underlying cellular and molecular basis of ocular defects in
hypopigmentation-related disorders.45

In addition to their role in melanin synthesis, melanosomes are also thought
to play a role in the degradation and detoxification of phagocytosed photore-
ceptor OSs by the RPE.214 In human patients suffering from ARMD, phago-
cytosed OS’s are not properly digested by the RPE. This defect results in the
accumulation of the lipofuscin component A2E, which is thought to further
inhibit OS component degradation, contributing to the progression of
ARMD.215 It is thought that A2E might inhibit the activity of vacuolar ATPases
(v-ATPase), whose known role is the acidification of lysosomes and lysosome-
related organelles, such as melanosomes.216 Acidification of these organelles is,
in turn, important for the activity of proteases and therefore for proper degra-
dation of accumulated materials. Consistent with this model, a recent analysis
of five separate zebrafish mutant lines defective in different subunits of the
v-ATPase complex revealed accumulations of undigested OS material in the
RPE.47 While no mutations in v-ATPase have been linked to blindness in
humans, these results suggest that defects in v-ATPase might directly or
indirectly cause disorders that affect RPE function.

Some of the other mutants that have been shown to possess RPE defects
coupled to retinal degeneration are gantenbein (gnn), bleached (blc), fading
vision (fdv), and fade out (fad).48–50 Of those, only the mutation underlying the
fdv phenotype has been cloned and identified. The fdv mutant was originally
isolated during a mutagenesis screen due to reduced pigmentation in the eye as
well as the rest its body.217 Like the lbk, vps18, and v-ATPase mutants, the fdv
RPE contains vesicular inclusions and their OS’s are reduced. However, the
visual defects identified in fdv mutants are thought to be due to disrupted
recycling of visual pigment, a defect that can be attributed to primary defects in
melanosome biogenesis.44 Positional cloning identified a mutation in the silver
a/pmel17 gene, whose orthologue has been originally shown to be important for
pigmentation in mice.218 While silver orthologues in various species have been
described and its overall function in melanosome biogenesis established, the
molecular mechanisms underlying its roles in pigmentation in general and RPE
function specifically are still controversial.219 Further study of existing mutants,
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such as fdv, as well as the identification and cloning of additional pigmentation
mutants, are therefore critical for our understanding of role of the RPE in
ocular development and disease.
D. Müller Glia in Regeneration and Disease

The study of stem cells has been of major interest due to the growing

potential of their use in therapeutic and regenerative medicine. The ability of
zebrafish to regenerate various tissues after injury has attracted major attention
from researchers seeking to identify the cellular and molecular mechanisms
that enable this regenerative capacity, which is often absent in mammals.220–222

In the vertebrate retina, two populations of stem/progenitor cells have been
identified: the Müller glia of the central retina, and the ciliary marginal zone
(CMZ) at the most peripheral edge of the retina. Both of these stem cell
populations add new neurons and glia to the zebrafish retina throughout the
lifetime of the animal. Müller glia give rise to rod photoreceptor precursors that
migrate along Müller glial processes to the photoreceptor layer. All other
retinal cell types are continually produced in the post-embryonic CMZ.
While the study of the stem/progenitor populations of the CMZ in zebrafish
has seen much progress in the past few years, including the identification of
mutants with CMZ-specific phenotypes,24,40,87,223–225 the remainder of this
section will focus on recent findings regarding Müller glia.

Neuroprotection, maintenance of retinal homeostasis, and the establish-
ment of proper retinal lamination are some of the many functions attributed to
Müller glia in the healthy retina (226). In response to retinal disease or damage,
Müller glia can become ‘‘reactive,’’ as characterized by changes in gene expres-
sion that are often followed by dedifferentiation and proliferation.227,228 Virtu-
ally every human retinal disease is associated to some degree with Müller glial
reactivity.226 In some cases, such as diabetic and proliferative retinopathies,
and retinal detachment, Müller glia are thought to become reactive in response
to primary detects arising in another cell type. In others, Müller glia are
thought to be the primary cell type affected. Still, in many human eye diseases,
the role of Müller glia in the onset of the disease is unclear. In humans suffering
from Basal Cell Naevus Syndrome (BCNS), epiretinal membranes (ERMs)—
proliferative and structural abnormalities at the boundary between the retina
and the vitreous, have been shown to contain a major glial component. Studies
in Ptchmutant mice have shown that Müller glial reactivity is locally associated
with BCNS-related ocular pathologies.229 However, it is yet unclear whether
ocular defects in BCNS patients are a result of a primary defects at the level of
Müller glia, or conversely, whether Müller glia are reactive in response to
another ocular defect. Recently, a zebrafish model for the study of BCNS-
related ocular pathologies has emerged in the leprechaun (lep) mutant line,
which possesses a loss-of-function mutation in the patched2 gene, the zebrafish
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orthologue of PTCH. ptc2mutants display retinal abnormalities that are similar
to those observed in human BCNS patients, including disruptions at the
vitreoretinal interface.40 Further study of ptc2 mutants is required to deter-
mine the role of Müller glia in BCNS-related ocular pathologies.

Müller glia have long been known to possess neurogenic potential, having
an intrinsic ability to give rise to newborn neurons. In the adult retina of lower
vertebrates, differentiated Müller glia continue to express molecular markers
that are characteristic of early retinal progenitors, such as pax6 and rx1.230

Clusters of proliferating rod progenitors are closely associated with Müller glia
and appear to migrate along their processes, which span the apical–basal width
of the adult retina, to their final location in the photoreceptor layer.231,232

A recent study utilizing transgenic zebrafish that express GFP under the
control of a Müller glia-specific promoter (Tg(gfap:GFP)) as a lineage tracer
has shown that rod progenitors retain low levels of GFP, suggesting that Müller
glia indeed give rise to rod photoreceptor precursors in the adult retina.233

These findings support the neurogenic potential of Müller glia and raise the
intriguing possibility of using Müller glia as a source for cell replacement
therapies for humans suffering from age-related photoreceptor loss.

While in the uninjured adult retina Müller glia give rise strictly to progeni-
tors destined to the rod lineage, Müller glia are also able to dedifferentiate,
proliferate, and replenish all neuronal cell types in response to retinal dam-
age.228,233 While conclusive lineage tracing to show Müller glia as the sole
source of regenerated neurons have not yet been published, the use of zebra-
fish transgenic lines together with extensive immunohistochemical analysis has
strongly supported the role of Müller glia as the stem cell population responsi-
ble for the regenerative response in the central retina.233,234 Since mutant
analysis in adults is labor intensive and time consuming, multiple labs have
also performed microarray analyses after retinal damage in order identify genes
that play a role in these processes. Consistent with the idea that regenerative
processes often recapitulate embryonic development, these studies identified
known developmental pathways such as BMP, Notch, Wnt, and Hedgehog as
being transcriptionally regulated in reactive Müller glia.235,236 It remains to be
seen what exact roles of each of these pathways in retinal regeneration, and
whether the genetic and/or chemical manipulation of these pathways might
have therapeutic value in humans.
E. Intraocular Vasculature

The vertebrate eye is highly metabolically active, and the intraocular

vasculature provides oxygen and other nutrients.237,238 Many human diseases
present with defects in intraocular vascularization, including diabetic retinopa-
thy, retinopathy of prematurity, and ARMD.238 Similarities between zebrafish
and human intraocular vasculature make the zebrafish an exciting new model
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organism in this field. For instance, Alvarez et al.239 recently showed that a
zebrafish model of hyperglycemia240 recapitulates some aspects of nonproli-
ferative diabetic retinopathy; zebrafish may therefore be a useful model for this
very common human disease.

In humans and in zebrafish, the hyaloid vessel network surrounds the
posterior lens during development.52,241 In humans, the hyaloid vasculature
regresses completely by birth, during which time the retinal vasculature (which
lines the inner limiting membrane) forms.241 In contrast, hyaloid regression
does not take place in zebrafish; the hyaloid vasculature instead remodels into
the retinal vasculature.52 In humans and in zebrafish, the choroid vasculature
covers the outer surface of the retina.134,238

One study utilized a transgenic zebrafish line in which cells of the vascula-
ture express GFP (Tg(fli1a:EGFP)y1) to screen various mutant and morphant
zebrafish for altered formation of the intraocular vasculature.52 Utilizing this
strategy, the authors demonstrated that several genes are required for hyaloid
and retinal vasculature development and maintenance, including syndecan 2
(morphants had no vasculature on the lens), and mab21l2 (morphants dis-
played disrupted hyaloid vessel patterning). Another study which investigated
the effects of foxc1 depletion (by morpholino) on hyaloid vessel ultrastructure
found that the integrity of the basement membrane of hyaloid vascular cells
was disrupted.51

Also utilizing transgenic zebrafish lines which express GFP in the vasculature
(Tg(fli1a:EGFP)y1 and Tg(kdrl:GFP)la116), Kitambi and colleagues134 performed
a small molecule screen to search for compounds which altered retinal vascula-
ture without significant alteration in trunk vasculature. The authors reported two
classes of compounds: one which induced degeneration of vessels, and one which
increased vessel diameter.134 This study provides an example of the powerful role
that zebrafish small molecule screens can play in therapeutics research.
III. Anterior Segment
A. Lens

The lens is a specialized transparent tissue which, in conjunction with the

cornea, focuses incoming light onto the retina.242 Lens opacity, or cataract, is
the leading cause of human visual impairment worldwide.1 Most cases of
cataracts are age-related, and likely have both genetic and environmental
causes.243 In addition, mutations in multiple genes are known to underlie
congenital cataracts (which arise in children during the first year of life).244

However, there are many cases of cataract and other lens disorders for which
no causative gene is yet known.245
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Development and adult morphology of the lens is similar in humans and in
zebrafish, but there are important differences as well. During the early stages
of lens development in humans and most other vertebrates, cells of the surface
ectoderm invaginate to form the lens vesicle.158,246 In zebrafish lens develop-
ment, surface ectoderm cells within the lens placode delaminate as a solid
cluster of cells rather than a vesicle (Fig. 3).145,147,155 Despite this difference,
cell fate analysis demonstrates that the relationship between zebrafish lens
placode cell position and cell fate within the mature lens is consistent with
the mammalian model,146 which indicates that a common genetic programmay
exist for lens development in vertebrates.

In zebrafish and humans, the mature lens is made up of tightly packed lens
fibers which are surrounded at the anterior periphery by a proliferative monolay-
er of lens epithelial cells (Fig. 4C). Throughout the life of the organism, epithelial
cells near the transition zone exit the cell cycle, migrate, elongate, and degrade
their light-scattering organelles to become new secondary fibers.145,147,148,247–249

In zebrafish, this mature lens state is reached by 72 hpf,146 by which time the lens
appropriately focuses an image onto the plane of the retinal photoreceptors.155 As
lens opacity results from many defective cellular processes,244 the early maturity
of the zebrafish lens provides a convenient readout for gene requirement by the
lens in mutants and knockdown experiments.

There are subtle differences in the mature structure of the lens between
zebrafish and humans. The epithelial cell layer on the surface of the mature
zebrafish lens extends further toward the posterior suture; in mammals, epi-
thelial cells end near the lens equator.147 The shape of the mature zebrafish
lens is also more spherical than the human lens, and it is responsible for nearly
all refraction to focus light onto the retina, unlike terrestrial vertebrates in
which much of the light refraction is performed by the cornea.144,250,251

When genes whose mutation causes human congenital cataracts are
knocked down in zebrafish embryos, cataracts or other lens abnormalities
often result (Table I). Zebrafish therefore provide a useful model to character-
ize the molecular mechanism of cataract formation. Human mutations in
transcription factors PITX3 and FOXE3 cause various anterior segment dis-
orders, including cataracts.252,253 Expression of both of these genes has been
knocked down in zebrafish via antisense morpholino,63,64,78,79 and for both
genes this results in lens dysmorphogenesis. Further experiments utilizing
these morpholino-injected embryos demonstrated that foxe3 is genetically
downstream of pitx3 in the zebrafish lens.63

Zebrafish with lens defects identified in large-scale mutagenesis screens can
also provide valuable information. Proteins known as crystallins contribute to the
transparency and refractive power of the lens and cornea,242 and mutations in
many lens crystallins are associated with cataracts in human patients.254 The
zebrafish mutant cloche (the genetic basis of which is unknown) presents with
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cataracts as well as severe vascular defects.85,255 In these mutants, both aA-
crystallinmRNAand protein expression is decreased, and the g-crystallin present
within the lens is predominantly insoluble. Both the cataract phenotype and
g-crystallin insolubility were rescued in cloche mutants by overexpression of
aA-crystallin by mRNA injection, likely due to the protein chaperone activity of
aA-crystallin.85 This study demonstrated the requirement for aA-crystallin for
proper lens development, as well as providing an exciting example of cataract
prevention.

The lens capsule is a transparent basement membrane which completely
encloses the lens. Laminin is a component of the lens capsule, and the expres-
sion of specific Laminin subunits is conserved between zebrafish and
humans.256 One component of zebrafish and human lens capsules is Lami-
nin-111, a heterotrimeric protein made up of Lama1, Lamb1, and Lamc1
subunits.5,53,69,257–259 None of these subunit genes have so far been associated
with an ocular disease in humans, although humans with mutations in LAMB2
have lens defects including abnormal shape and cataract.260,261 However,
zebrafish mutants or morphants in lama1, lamb1, and lamc1 all present with
defective lens phenotypes.5,24,53,58,69–72,82,262

In lama1 morpholino-injected embryos, the lens degenerates completely
by 48 hpf,69 and in various homozygous alleles of lama1 mutants, the lens is
dysmorphic and eventually degenerates completely.53,72 Homozygous mutants
in lamb1 or lamc1 present with very similar lens phenotypes characterized by
lens dysplasia at 5 dpf,5 and the lens degenerates completely by 6–9 dpf.5,72

Zebrafish deficient in subunits of Laminin-111 provide a useful model system
to elucidate the roles for laminin-containing ECM in the lens. For instance,
one study found that reduced Focal Adhesion Kinase signaling likely underlies
the lens phenotype in lama1 mutants.53
B. Cornea

As the most anterior structure within the eye, the transparent cornea pro-

vides protection and, in terrestrial vertebrates, refraction of incoming
light.144,250,251 Major causes of corneal blindness include the infectious disease
Trachoma, vitamin A deficiency, and injury.1 Human genetic corneal dystrophies,
though less common, are another cause of blindness due to corneal opacity.263

In humans and in zebrafish, the mature cornea contains five major layers:
the stratified corneal epithelium at the anterior, Bowman’s Layer, the stroma,
Descemet’s membrane, and the corneal endothelium.148,150,151,154,264 At 72 hpf
in zebrafish, a rudimentary cornea consisting of a two-cell-layer epithelium, an
acellular stroma, and the endothelium is in place.148,150 Bowman’s layer is
formed by 5 dpf, and the zebrafish cornea (which is much thinner than the
human cornea) is fully mature at 2 months postfertilization.150
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Many shared proteins are expressed in both the human and zebrafish
cornea,150 although many of the highly expressed corneal crystallins are taxon
specific.265 In most mammals, including humans, the most abundant corneal
crystallin is Aldehyde Dehydrogenase 3a1.266 In contrast, 50% of soluble
protein in zebrafish adult cornea is made up of Scinderin-Like Protein A
(also known as C/L-Gelsolin and Gelsolin-Like 1).267

There are several human corneal dystrophies which lead to opacity of the
cornea. For many, the responsible gene is known, but few knockout or trans-
genic mouse mutants in the particular defective gene have been reported.263

Some of these genes, including pip5k3 (Fleck Corneal Dystrophy268,269) and
keratocan (Cornea Plana270,271) are expressed in the zebrafish cornea. Using
blastula-stage transplants (see Section I), it is possible to study the function of
genes, the mutation of which would otherwise be embryonic lethal in the
mature zebrafish cornea.53 Semina and colleagues53 utilized this technique to
show that loss of functional lama1 in eye tissues leads to focal corneal dysplasia
in adult zebrafish. Utilizing early-stage lens ablation, the authors further
showed that corneal and other eye defects in lama1 mutants are not a second-
ary consequence of lens degeneration.
C. Glaucoma

Second in prevalence only to cataracts in cases of worldwide human

blindness,1 glaucoma encompasses a group of related progressive diseases
characterized by death of retinal ganglion cells and subsequent degeneration
of the optic nerve which leads to irreversible blindness.272 Although many
genes are associated with human cases of glaucoma, incomplete penetrance
within families indicates that the various causes of glaucoma are multigenic.273

Elevated intraocular pressure (IOP) is a major risk factor associated with
glaucoma.274,275 IOP results from the balance between aqueous humor secre-
tion (from the ciliary epithelium) and outflow, with defective outflow being the
most common cause of elevated IOP.276,277 In humans, aqueous humor pro-
vides nutrients and removes waste products, and its exit from the anterior
segment is through the trabecular meshwork outflow pathways.278

Although one group has advised caution in using zebrafish as a model for
glaucoma research due to the ultrastructural dissimilarity between the mam-
malian trabecular meshwork and the zebrafish annular ligament,153 a second
group has more recently utilized aqueous humor tracing experiments to metic-
ulously detail the outflow pathway in the zebrafish eye.149 Gray and collea-
gues149 found that the appropriate zebrafish analog to the mammalian outflow
pathway is in fact the ventral canalicular network, and not the annular ligament.
Further, the authors found that the ultrastructure of this region was overall
quite similar in zebrafish and humans, although the aqueous humor flow
pathway in zebrafish is vectorial (flowing from dorsal to ventral) rather than
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circumferential as in humans. Despite this difference, the overall similarities in
aqueous humor outflow tissue structure make the zebrafish a potentially valu-
able model organism for human glaucomas.

The zebrafish is an ideal model system in which to study multigenic
traits.279 In addition, methodology for measuring zebrafish IOP has been
developed, and average intraocular pressure ranges are similar in mammals
and zebrafish.152 Utilizing this technique, the zebrafish mutant brass (genetic
basis unknown) was shown to have elevated IOP along with anterior segment
defects.152 Although brass zebrafish do not develop glaucoma, their genetic
background could be used to uncover glaucoma modifier loci.152

In humans, mutation of the gene FOXC1 is associated with Axenfeld–
Reiger Syndrome, which includes glaucoma in some individuals.280–282 Zebra-
fish foxc1 is expressed in the anterior segment and POM.279 By utilizing
morpholinos to knock down foxc1 expression in zebrafish embryos along with
other techniques, one study has provided evidence that FoxC1 directly acti-
vates expression of fgf19 within the POM.61 Fgf19 goes on to activate Fgfr4
receptors, and this interaction is required for appropriate anterior segment
development.61 Reduced foxc1 expression during zebrafish eye development
also results in reduced expression of the cellular homeostasis and apoptosis
regulator foxo1, and in increased apoptosis within the zebrafish eye.283

Mutation of the gene lmx1b in humans is associated with Nail–Patella
syndrome and an increased susceptibility to glaucoma.284 Similar to the expres-
sion pattern in mice,285 zebrafish orthologues of this gene are expressed in cells
of the POM.187 Reduction of lmx1b expression in zebrafish with morpholinos
resulted in early eye morphological defects, enhanced ocular FGF activity, and
in altered expression of two genes also implicated in glaucoma: foxc1 and
pitx2.187,282,286,287 Results from the study further suggest that lmx1b-expressing
cells in the zebrafish eye have migration defects in the absence of lmx1b
expression.187
IV. Concluding Remarks

The zebrafish has emerged as a powerful model system for the study of the
cellular and molecular underpinnings of human ocular pathologies. Large-scale
genetic screens have identified genes whose study is relevant for understanding
both eye development and disease, while the continual development of tools
for the manipulation of gene function in vivo has enabled researchers to study
their functions during eye development and maintenance. Current and future
research efforts utilizing the zebrafish system promise to continue to provide
important insights into human ocular conditions and contribute to the discov-
ery and development of relevant therapeutics.
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